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Ising model

• Graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸)

• Parameter 𝛽𝛽 ∈ ℝ

• Configuration 𝜎𝜎 ∈ +1,−1 𝑉𝑉 with weight: 

𝑤𝑤𝑤𝑤 𝜎𝜎 = exp 𝛽𝛽 ⋅ #monochromatic edges

• Gibbs distribution: 𝜋𝜋Ising 𝜎𝜎 = 𝑤𝑤𝑤𝑤(𝜎𝜎)
𝑍𝑍Ising 𝛽𝛽

= 𝑤𝑤𝑤𝑤(𝜎𝜎)
∑
𝜏𝜏∈ −1,1 𝑉𝑉 𝑤𝑤𝑤𝑤 𝜏𝜏

 

𝑒𝑒3𝛽𝛽 𝑒𝑒4𝛽𝛽
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Ising model

𝜋𝜋Ising 𝜎𝜎 =
𝑤𝑤𝑤𝑤(𝜎𝜎)
𝑍𝑍Ising 𝛽𝛽

=
𝑤𝑤𝑤𝑤(𝜎𝜎)

∑𝜏𝜏∈ 0,1 𝑉𝑉 𝑤𝑤𝑤𝑤 𝜏𝜏

∝ exp 𝛽𝛽 �
𝑖𝑖𝑖𝑖∈𝐸𝐸

1 + 𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗
2

• Sampling: can you efficiently draw samples from the Gibbs distribution 𝜋𝜋Ising?

• Optimization: can you minimize the Hamiltonian 𝐻𝐻 𝜎𝜎 ≔ ∑𝑖𝑖𝑖𝑖∈𝐸𝐸
1+𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗

2
 for 𝜎𝜎 ∈ ±1 𝑉𝑉?

• Partition function estimation: can you approximate 𝑍𝑍Ising 𝛽𝛽  to within 𝜖𝜖 error?



Applications
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Statistical inference

Pr Θ 𝑋𝑋] =
Pr 𝑋𝑋 Θ] ⋅ Pr Θ

Pr 𝑋𝑋

Pr 𝑋𝑋 = �Pr 𝑋𝑋 Θ] ⋅ Pr Θ 𝑑𝑑Θ

Statistical mechanics and phase transitions

• Graphical model:

𝐻𝐻 𝜎𝜎 ≔ −�
𝑖𝑖𝑖𝑖∈𝐸𝐸

𝜓𝜓𝑖𝑖𝑖𝑖 𝜎𝜎𝑖𝑖 ,𝜎𝜎𝑗𝑗  ∀𝜎𝜎 ∈ 𝑞𝑞 𝑉𝑉

𝜇𝜇𝛽𝛽 𝜎𝜎 ∝ exp −𝛽𝛽𝛽𝛽 𝜎𝜎

• Independent sets, matchings, colorings … 

Volume estimation

• Given access to a high-dim convex body 𝒦𝒦 (via 
membership oracle or constraints)

• Estimate Vol 𝒦𝒦

Fairness and Differential privacy

• Detecting gerrymandering: randomly sample 
redistricting plans from an appropriate 
distribution

• Exponential mechanism for 𝜖𝜖-DP:
𝜋𝜋 𝑥𝑥 ∝ exp 𝛽𝛽𝛽𝛽 𝑥𝑥,𝐷𝐷

where 𝑢𝑢 is the utility function



Today’s plan

October 16, 2025 4

• A canonical approach for sampling is via Markov chains

• Design a Markov chain such that the target distribution 𝜋𝜋 is its fixed point

• Simulate the Markov chain on any initial point for 𝑇𝑇 steps

• Prove the mixing time of this Markov chain

•  In the past few lectures, we’ve introduced various convex relaxations and rounding algorithms

• Today, we’ll see another approach that uses relaxation+rounding: Variational Inference and Mean-field 
approximation



Starting point
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Gibbs variational principle.  Let Ω be a finite state space. Then the Shannon entropy function 

𝜇𝜇 ↦ −𝐻𝐻 𝜇𝜇 = �
𝑥𝑥∈Ω

𝜇𝜇 𝑥𝑥 log𝜇𝜇 𝑥𝑥

on probability measures over Ω is smooth and strictly convex 

Furthermore, for every function 𝑓𝑓:Ω → ℝ,

ℱ ≔ log �
𝑥𝑥∈Ω

𝑒𝑒𝑓𝑓 𝑥𝑥 = sup
𝜈𝜈

𝔼𝔼𝑥𝑥∼𝜈𝜈 𝑓𝑓 𝑥𝑥 + 𝐻𝐻 𝜈𝜈

and the supremum is uniquely attained at the Gibbs measure 𝜇𝜇 𝑥𝑥 ∝ 𝑒𝑒𝑓𝑓 𝑥𝑥

“free energy”



Proof of the Gibbs variational principle
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• For any distributions 𝑝𝑝 and 𝑞𝑞 over Ω, the KL divergence is defined as:

𝐷𝐷KL 𝑝𝑝‖𝑞𝑞 ≔ �
𝑥𝑥∈Ω

𝑝𝑝 𝑥𝑥 log
𝑝𝑝 𝑥𝑥
𝑞𝑞 𝑥𝑥

= −𝐻𝐻 𝑝𝑝 − 𝔼𝔼𝑥𝑥∼𝑝𝑝 log𝑞𝑞 𝑥𝑥

• 𝐷𝐷KL 𝑝𝑝‖𝑞𝑞 ≥ 0 with equality iff 𝑝𝑝 = 𝑞𝑞

• Let 𝑝𝑝 ≔ 𝜈𝜈 and 𝑞𝑞 ≔ 𝜇𝜇 = �𝑒𝑒𝑓𝑓 𝑍𝑍𝑓𝑓 where 𝑍𝑍𝑓𝑓 = ∑𝑥𝑥∈Ω 𝑒𝑒𝑓𝑓 𝑥𝑥  is the partition function

• Then, we have
0 ≤ 𝐷𝐷KL 𝜈𝜈‖𝜇𝜇 = −𝐻𝐻 𝜈𝜈 − 𝔼𝔼𝑥𝑥∼𝜈𝜈 log �𝑒𝑒𝑓𝑓 𝑥𝑥 𝑍𝑍𝑓𝑓 = −𝐻𝐻 𝜈𝜈 − 𝔼𝔼𝑥𝑥∼𝜈𝜈 𝑓𝑓 𝑥𝑥 + log𝑍𝑍𝑓𝑓

∎
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Gibbs variational principle.  Let Ω be a finite state space. Then the Shannon entropy function 

𝜇𝜇 ↦ −𝐻𝐻 𝜇𝜇 = �
𝑥𝑥∈Ω

𝜇𝜇 𝑥𝑥 log𝜇𝜇 𝑥𝑥

on probability measures over Ω is smooth and strictly convex 

Furthermore, for every function 𝑓𝑓:Ω → ℝ,

ℱ ≔ log �
𝑥𝑥∈Ω

𝑒𝑒𝑓𝑓 𝑥𝑥 = sup
𝜈𝜈

𝔼𝔼𝑥𝑥∼𝜈𝜈 𝑓𝑓 𝑥𝑥 + 𝐻𝐻 𝜈𝜈

and the supremum is uniquely attained at the Gibbs measure 𝜇𝜇 𝑥𝑥 ∝ 𝑒𝑒𝑓𝑓 𝑥𝑥

Estimating log-
partition function

Maximizing a 
concave function

Issue: Ω is exp large!“free energy”



The naïve mean-field approximation
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• Idea: restrict the class of probability measure 𝜈𝜈 in the optimization

• Product measure over ±1 𝑛𝑛 where 𝑛𝑛 ≔ Ω :

ℱNMF ≔ sup
𝜈𝜈 product

𝔼𝔼𝑥𝑥∼𝜈𝜈 𝑓𝑓 𝑥𝑥 + 𝐻𝐻 𝜈𝜈

= sup
𝒎𝒎∈ −1,1 𝑛𝑛

𝔼𝔼𝑥𝑥∼𝜋𝜋(𝒎𝒎) 𝑓𝑓 𝑥𝑥 + 𝐻𝐻 𝜋𝜋(𝒎𝒎)

• Every product measure is uniquely identified by its mean vector 𝒎𝒎 ∈ −1,1 𝑛𝑛

• The entropy can be explicitly calculated:

𝐻𝐻 𝜋𝜋 𝒎𝒎 = −�
𝑖𝑖=1

𝑛𝑛
1 + 𝒎𝒎𝑖𝑖

2 log
1 + 𝒎𝒎𝑖𝑖

2 +
1 −𝒎𝒎𝑖𝑖

2 log
1 −𝒎𝒎𝑖𝑖

2  

• For many natural 𝑓𝑓 (e.g., quadratic form), 𝔼𝔼𝑥𝑥∼𝜋𝜋(𝒎𝒎) 𝑓𝑓 𝑥𝑥  is also easy to compute

ℱ
?



How good is the mean-field approximation?

October 16, 2025 9

The Gibbs measure 𝜇𝜇 ∝ 𝑒𝑒𝑓𝑓 exhibits mean-field behavior (as 𝑛𝑛 → ∞) if
ℱ − ℱNMF

𝑛𝑛
= 𝑜𝑜 1

• 𝑜𝑜 𝑛𝑛 -additive approximation to ℱ    ⟺    𝑒𝑒𝑜𝑜 𝑛𝑛 -multiplicative approximation to 𝑍𝑍𝑓𝑓

• Related to the asymptotic free energy density:

lim
𝑛𝑛→∞

1
𝑛𝑛
ℱ ≈𝑜𝑜 1 lim

𝑛𝑛→∞

1
𝑛𝑛
ℱNMF

 Can derive many physically interesting quantities, e.g. magnetization, specific heat, susceptibility 

 Can predict phase transitions by the differentiability/continuity/smoothness of the asymptotic free 
energy density in the model parameters (e.g. 𝛽𝛽)



NMF approximation error for Ising models
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Theorem 1 (Jain-Koehler-Risteski ’19).

For a symmetric interaction matrix 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑛𝑛, and consider the Ising Gibbs measure 

𝜇𝜇 𝜎𝜎 ∝ 𝑒𝑒𝑓𝑓 𝜎𝜎  where 𝑓𝑓 𝜎𝜎 =
1
2𝜎𝜎

⊤𝐴𝐴𝐴𝐴

Then, ℱ − ℱNMF = 𝒪𝒪 𝑛𝑛 ⁄2 3 𝐴𝐴 𝐹𝐹
⁄2 3

Example 1:

• Consider 𝐴𝐴 = 𝛽𝛽
𝑑𝑑
𝐴𝐴𝐺𝐺 where 𝐺𝐺 is a 𝑑𝑑-regular graph and 𝐴𝐴𝐺𝐺 is the adjacency matrix

• 𝐴𝐴 𝐹𝐹
⁄2 3 = ⁄𝛽𝛽 𝑑𝑑 ⁄2 3 𝑑𝑑𝑑𝑑 ⁄1 3

• ℱ − ℱNMF = 𝒪𝒪 𝑛𝑛𝛽𝛽 ⁄2 3𝑑𝑑 ⁄−1 3 “NMF works better on dense problem”



NMF approximation error for Ising models
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Theorem 2 (Eldan ’20).

For a symmetric interaction matrix 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑛𝑛, and consider the Ising Gibbs measure 

𝜇𝜇 𝜎𝜎 ∝ 𝑒𝑒𝑓𝑓 𝜎𝜎  where 𝑓𝑓 𝜎𝜎 =
1
2𝜎𝜎

⊤𝐴𝐴𝐴𝐴

Then, ℱ − ℱNMF ≤ 3 log det 𝐼𝐼 + 𝐿𝐿 ⁄1 2Cov 𝜇𝜇 𝐿𝐿 ⁄1 2 , where 𝐿𝐿 ≔ 𝐴𝐴2 ⁄1 2

Example 2:

• Consider 𝐴𝐴 = 𝛽𝛽
𝑛𝑛
𝟏𝟏𝟏𝟏⊤

• ℱ − ℱNMF ≤ 3 log 𝑛𝑛𝑛𝑛  instead of 𝛽𝛽𝑛𝑛 ⁄2 3



Sherali-Adams hierarchy
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Low-degree function 

Let 𝑓𝑓: ±1 𝑛𝑛 → ℝ be an arbitrary function. Then there is a unique multi-affine polynomial

�
𝑆𝑆⊆ 𝑛𝑛

𝑓𝑓 𝑆𝑆 �
𝑖𝑖∈𝑆𝑆

𝑥𝑥𝑖𝑖

which agrees with 𝑓𝑓 on ±1 𝑛𝑛

• 𝑓𝑓 𝑆𝑆  are the Fourier coefficients of 𝑓𝑓

• supp 𝑓𝑓 ≔ 𝑆𝑆 ⊆ 𝑛𝑛 ∶ 𝑓𝑓 𝑆𝑆 ≠ 0  is the support of 𝑓𝑓

• deg 𝑓𝑓 ≔ max
𝑆𝑆∈supp 𝑓𝑓

𝑆𝑆  is the degree of 𝑓𝑓



Sherali-Adams pseudo-distribution
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Pseudo-distribution

Let 𝔉𝔉 ⊆ 2 𝑛𝑛  be a downwards closed family of subsets (i.e.  if 𝑇𝑇 ∈ 𝔉𝔉 and 𝑆𝑆 ⊆ 𝑇𝑇, then 𝑆𝑆 ∈ 𝔉𝔉)
An 𝔉𝔉-pseudo-distribution over ±1 𝑛𝑛 is a collection �𝒑𝒑 = �𝒑𝒑𝑆𝑆 𝑆𝑆∈𝔉𝔉 of probability distributions �𝑝𝑝𝑆𝑆 over ±1 𝑆𝑆 
satisfying the following local consistency relations:

�𝒑𝒑𝑆𝑆 𝜏𝜏 = Pr
𝜎𝜎∼�𝒑𝒑𝑇𝑇

𝜎𝜎𝑆𝑆 = 𝜏𝜏 ,  ∀𝑆𝑆,𝑇𝑇 ∈ 𝔉𝔉 𝑠𝑠. 𝑡𝑡.  𝑆𝑆 ⊆ 𝑇𝑇, ∀𝜏𝜏 ∈ ±1 𝑆𝑆

• The degree of the pseudo-distribution is max
𝑆𝑆∈𝔉𝔉

𝑆𝑆

• For a degree-𝑘𝑘 pseudo-distribution,

#para = �
𝑆𝑆⊆𝔉𝔉

2 𝑆𝑆 ≤ 𝑛𝑛𝒪𝒪 𝑘𝑘

• Every genuine distribution 𝜇𝜇 is a pseudo-distribution {𝜇𝜇𝑆𝑆}, 
where 𝜇𝜇𝑆𝑆 is the marginal distribution on 𝑆𝑆 

Reverse direction?



Sherali-Adams pseudo-distribution
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Pseudo-distribution

Let 𝔉𝔉 ⊆ 2 𝑛𝑛  be a downwards closed family of subsets (i.e.  if 𝑇𝑇 ∈ 𝔉𝔉 and 𝑆𝑆 ⊆ 𝑇𝑇, then 𝑆𝑆 ∈ 𝔉𝔉)
An 𝔉𝔉-pseudo-distribution over ±1 𝑛𝑛 is a collection �𝒑𝒑 = �𝒑𝒑𝑆𝑆 𝑆𝑆∈𝔉𝔉 of probability distributions �𝑝𝑝𝑆𝑆 over ±1 𝑆𝑆 
satisfying the following local consistency relations:

�𝒑𝒑𝑆𝑆 𝜏𝜏 = Pr
𝜎𝜎∼�𝒑𝒑𝑇𝑇

𝜎𝜎𝑆𝑆 = 𝜏𝜏 ,  ∀𝑆𝑆,𝑇𝑇 ∈ 𝔉𝔉 𝑠𝑠. 𝑡𝑡.  𝑆𝑆 ⊆ 𝑇𝑇, ∀𝜏𝜏 ∈ ±1 𝑆𝑆

• The degree of the pseudo-distribution is max
𝑆𝑆∈𝔉𝔉

𝑆𝑆

Counterexample

• 𝑛𝑛 = 3 and 𝔉𝔉 = ∅, 1 , 2 , 3 , 1,2 , 1,3 , 2,3
• �𝒑𝒑𝑖𝑖 𝑖𝑖 = ±1 = ⁄1 2
• �𝒑𝒑𝑖𝑖𝑗𝑗 𝑖𝑖 = 1, 𝑗𝑗 = −1 = �𝒑𝒑𝑖𝑖𝑖𝑖 𝑖𝑖 = −1, 𝑗𝑗 = 1 = ⁄1 2

• No global distribution 𝒑𝒑123 can exist since 1,2,3  cannot be all distinct

a degree-2 pseudo-distribution



Sherali-Adams pseudo-distribution
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Pseudo-distribution

Let 𝔉𝔉 ⊆ 2 𝑛𝑛  be a downwards closed family of subsets (i.e.  if 𝑇𝑇 ∈ 𝔉𝔉 and 𝑆𝑆 ⊆ 𝑇𝑇, then 𝑆𝑆 ∈ 𝔉𝔉)
An 𝔉𝔉-pseudo-distribution over ±1 𝑛𝑛 is a collection �𝒑𝒑 = �𝒑𝒑𝑆𝑆 𝑆𝑆∈𝔉𝔉 of probability distributions �𝒑𝒑𝑆𝑆 over ±1 𝑆𝑆 
satisfying the following local consistency relations:

�𝒑𝒑𝑆𝑆 𝜏𝜏 = Pr
𝜎𝜎∼�𝒑𝒑𝑇𝑇

𝜎𝜎𝑆𝑆 = 𝜏𝜏 ,  ∀𝑆𝑆,𝑇𝑇 ∈ 𝔉𝔉 𝑠𝑠. 𝑡𝑡.  𝑆𝑆 ⊆ 𝑇𝑇, ∀𝜏𝜏 ∈ ±1 𝑆𝑆

• The degree of the pseudo-distribution is max
𝑆𝑆∈𝔉𝔉

𝑆𝑆

• Pseudo-expectation: for any 𝑓𝑓 𝑥𝑥 = ∑𝑆𝑆 𝑐𝑐𝑆𝑆 ∏𝑖𝑖∈𝑆𝑆 𝑥𝑥𝑖𝑖 with supp 𝑓𝑓 ⊆ 𝔉𝔉,

�𝔼𝔼 𝑓𝑓 ≔�
𝑆𝑆

𝑐𝑐𝑆𝑆𝔼𝔼𝜎𝜎𝑆𝑆∼�𝒑𝒑𝑆𝑆 �
𝑖𝑖∈𝑆𝑆

𝜎𝜎𝑖𝑖



The Bethe approximation (level-2 Sherali-Adams)
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Let 𝐺𝐺 = 𝑉𝑉,𝐸𝐸  with adjacency matrix 𝐴𝐴, and consider the Ising Gibbs measure 

𝜇𝜇 𝜎𝜎 ∝ 𝑒𝑒𝑓𝑓 𝜎𝜎  where 𝑓𝑓 𝜎𝜎 =
1
2
𝜎𝜎⊤𝐴𝐴𝐴𝐴

Let 𝔉𝔉 be the downwards closure of the set of edges 𝐸𝐸, i.e.  𝔉𝔉 = ∅ ∪ 𝑣𝑣 ∶ 𝑣𝑣 ∈ V ∪ 𝑢𝑢, 𝑣𝑣 ∶ 𝑢𝑢𝑢𝑢 ∈ 𝐸𝐸

Define the Bethe free energy by

ℱBethe ≔ sup
𝔉𝔉−pseudo−dist. �𝒑𝒑

�𝔼𝔼 𝑓𝑓 + 𝐻𝐻Bethe �𝒑𝒑

where 𝐻𝐻Bethe is the Bethe entropy:

𝐻𝐻Bethe �𝒑𝒑 ≔�
𝑒𝑒∈𝐸𝐸

𝐻𝐻 �𝑝𝑝𝑒𝑒 −�
𝑣𝑣∈𝑉𝑉

deg 𝑣𝑣 − 1 𝐻𝐻 �𝒑𝒑𝑣𝑣

= �
𝑣𝑣∈𝑉𝑉

𝐻𝐻 �𝒑𝒑𝑣𝑣 − �
𝑢𝑢𝑢𝑢∈𝐸𝐸

𝐼𝐼 𝑢𝑢; 𝑣𝑣 “correct double-counting”



The Bethe entropy
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𝐻𝐻Bethe �𝒑𝒑 ≔�
𝑒𝑒∈𝐸𝐸

𝐻𝐻 �𝒑𝒑𝑒𝑒 −�
𝑣𝑣∈𝑉𝑉

deg 𝑣𝑣 − 1 𝐻𝐻 �𝒑𝒑𝑣𝑣

Fact.  Let 𝑇𝑇 be a tree and 𝒑𝒑 be any probability distribution defined on 𝑇𝑇. Then,

𝒑𝒑 𝜎𝜎 =
∏𝑢𝑢𝑢𝑢∈𝐸𝐸 𝒑𝒑𝑢𝑢𝑢𝑢 𝜎𝜎𝑢𝑢,𝜎𝜎𝑣𝑣

∏𝑣𝑣∈V 𝒑𝒑𝑣𝑣 𝜎𝜎𝑣𝑣
deg 𝑣𝑣 −1  ∀𝜎𝜎 ∈ ±1 𝑉𝑉

𝐻𝐻 𝒑𝒑 = − �
𝜎𝜎∈ ±1 𝑉𝑉

𝒑𝒑 𝜎𝜎 log𝒑𝒑 𝜎𝜎 = �
𝜎𝜎∈ ±1 𝑉𝑉

𝒑𝒑 𝜎𝜎 �
𝑣𝑣∈𝑉𝑉

deg 𝑣𝑣 − 1 log𝒑𝒑𝑣𝑣 𝜎𝜎𝑣𝑣 − �
𝑢𝑢𝑢𝑢∈𝐸𝐸

log𝒑𝒑𝑢𝑢𝑢𝑢 𝜎𝜎𝑢𝑢,𝜎𝜎𝑣𝑣

= �
𝑣𝑣∈𝑉𝑉

deg 𝑣𝑣 − 1 �
𝜎𝜎𝑣𝑣

𝒑𝒑𝑣𝑣 𝜎𝜎𝑣𝑣 log𝒑𝒑𝑣𝑣 𝜎𝜎𝑣𝑣 − �
𝑢𝑢𝑢𝑢∈𝐸𝐸

�
𝜎𝜎𝑢𝑢,𝜎𝜎𝑣𝑣

𝒑𝒑𝑢𝑢𝑢𝑢 𝜎𝜎𝑢𝑢,𝜎𝜎𝑣𝑣 log𝒑𝒑𝑢𝑢𝑢𝑢 𝜎𝜎𝑢𝑢,𝜎𝜎𝑣𝑣

= �
𝑒𝑒∈𝐸𝐸

𝐻𝐻 𝒑𝒑𝑒𝑒 −�
𝑣𝑣∈𝑉𝑉

deg 𝑣𝑣 − 1 𝐻𝐻 𝒑𝒑𝑣𝑣

= 𝐻𝐻Bethe 𝒑𝒑
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Let 𝐺𝐺 = 𝑉𝑉,𝐸𝐸  with adjacency matrix 𝐴𝐴, and consider the Ising Gibbs measure 

𝜇𝜇 𝜎𝜎 ∝ 𝑒𝑒𝑓𝑓 𝜎𝜎  where 𝑓𝑓 𝜎𝜎 =
1
2
𝜎𝜎⊤𝐴𝐴𝐴𝐴

Let 𝔉𝔉 be the downwards closure of the set of edges 𝐸𝐸, i.e.  𝔉𝔉 = ∅ ∪ 𝑣𝑣 ∶ 𝑣𝑣 ∈ V ∪ 𝑢𝑢, 𝑣𝑣 ∶ 𝑢𝑢𝑢𝑢 ∈ 𝐸𝐸

Define the Bethe free energy by

ℱBethe ≔ sup
𝔉𝔉−pseudo−dist. �𝒑𝒑

�𝔼𝔼 𝑓𝑓 + 𝐻𝐻Bethe �𝒑𝒑

• Widely used for approximating the free energy of sparse graphical models

• The optimizer of ℱBethe gives the belief propagation equations
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• Define 𝔉𝔉𝑘𝑘 ≔ 𝑛𝑛
≤𝑘𝑘 , and SA 𝑘𝑘; 𝑛𝑛  be the set of all 𝔉𝔉𝑘𝑘-pseudo-distributions

Conditioning a pseudo-distribution

Let �𝒑𝒑 ∈ SA 𝑘𝑘; 𝑛𝑛 . For any 𝑆𝑆 ∈ 𝔉𝔉𝑘𝑘−1, and any 𝜏𝜏 ∈ ±1 𝑆𝑆, define the conditional pseudo-distribution:

�𝒑𝒑𝑇𝑇𝜏𝜏 𝜎𝜎 ≔ �𝒑𝒑𝑆𝑆∪𝑇𝑇 𝜏𝜏 ∘ 𝜎𝜎  ∀𝑇𝑇 ∈
𝑛𝑛 \S

≤ 𝑘𝑘 − 𝑆𝑆
,∀𝜎𝜎 ∈ ±1 𝑇𝑇

Then, �𝒑𝒑𝜏𝜏 ∈ SA 𝑘𝑘 − 𝑆𝑆 ; 𝑛𝑛 \S

Augmented pseudo-entropy

Let �𝒑𝒑 ∈ SA 𝑘𝑘; 𝑛𝑛 . For 0 ≤ 𝑗𝑗 ≤ 𝑘𝑘 − 1, define the 𝑗𝑗-th augmented pseudo-entropy by

�𝐻𝐻𝑗𝑗 �𝒑𝒑 ≔ min
𝑆𝑆 ≤𝑗𝑗

𝐻𝐻 �𝒑𝒑𝑆𝑆 + �
𝑖𝑖∉𝑆𝑆

𝐻𝐻 �𝒑𝒑𝑖𝑖 �𝒑𝒑𝑆𝑆  where 𝐻𝐻 �𝒑𝒑𝑖𝑖 �𝒑𝒑𝑆𝑆 ≔ 𝔼𝔼𝜏𝜏∼�𝒑𝒑𝑆𝑆 𝐻𝐻 �𝒑𝒑𝑖𝑖𝜏𝜏
𝑆𝑆

𝑇𝑇1 𝑇𝑇2

𝑇𝑇3
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• Define 𝔉𝔉𝑘𝑘 ≔ 𝑛𝑛
≤𝑘𝑘 , and SA 𝑘𝑘; 𝑛𝑛  be the set of all 𝔉𝔉𝑘𝑘-pseudo-distributions

Augmented pseudo-entropy

Let �𝒑𝒑 ∈ SA 𝑘𝑘; 𝑛𝑛 . For 0 ≤ 𝑗𝑗 ≤ 𝑘𝑘 − 1, define the 𝑗𝑗-th augmented pseudo-entropy by

�𝐻𝐻𝑗𝑗 �𝒑𝒑 ≔ min
𝑆𝑆 ≤𝑗𝑗

𝐻𝐻 �𝒑𝒑𝑆𝑆 + �
𝑖𝑖∉𝑆𝑆

𝐻𝐻 �𝒑𝒑𝑖𝑖 �𝒑𝒑𝑆𝑆  where 𝐻𝐻 �𝒑𝒑𝑖𝑖 �𝒑𝒑𝑆𝑆 ≔ 𝔼𝔼𝜏𝜏∼ �𝑝𝑝𝑆𝑆 𝐻𝐻 �𝒑𝒑𝑖𝑖𝜏𝜏

Sherali-Adams free energy

Let 𝑓𝑓: ±1 𝑛𝑛 → ℝ with deg 𝑓𝑓 ≤ 𝑘𝑘. For 0 ≤ 𝑗𝑗 ≤ 𝑘𝑘 − 1, define

ℱSA 𝑘𝑘; 𝑛𝑛 ,𝑗𝑗 ≔ sup
�𝒑𝒑∈SA 𝑘𝑘; 𝑛𝑛

�𝔼𝔼 𝑓𝑓 + �𝐻𝐻𝑗𝑗 �𝒑𝒑
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�𝐻𝐻𝑗𝑗 �𝒑𝒑 ≔ min
𝑆𝑆 ≤𝑗𝑗

𝐻𝐻 �𝒑𝒑𝑆𝑆 + �
𝑖𝑖∉𝑆𝑆

𝐻𝐻 �𝒑𝒑𝑖𝑖 �𝒑𝒑𝑆𝑆  where 𝐻𝐻 �𝒑𝒑𝑖𝑖 �𝒑𝒑𝑆𝑆 ≔ 𝔼𝔼𝜏𝜏∼�𝒑𝒑𝑆𝑆 𝐻𝐻 �𝒑𝒑𝑖𝑖𝜏𝜏

Lemma.  For every 0 ≤ 𝑗𝑗 ≤ 𝑘𝑘 − 1, the function �𝒑𝒑 ↦ 𝐻𝐻𝑗𝑗 �𝒑𝒑  over SA 𝑘𝑘; 𝑛𝑛  satisfies:

1) For every genuine probability distribution 𝜇𝜇, 𝐻𝐻 𝜇𝜇 ≤ �𝐻𝐻𝑗𝑗 𝜇𝜇

Proof.

• Let 𝑿𝑿 ∼ 𝜇𝜇. By the chain rule of Shannon entropy,

𝐻𝐻 𝑿𝑿 = 𝐻𝐻 𝑿𝑿𝑆𝑆 + 𝐻𝐻 𝑿𝑿 𝑛𝑛 \𝑆𝑆 𝑿𝑿𝑆𝑆

≤ 𝐻𝐻 𝑿𝑿𝑆𝑆 + �
𝑖𝑖∈ 𝑛𝑛 \S

𝐻𝐻 𝑿𝑿𝑖𝑖  𝑿𝑿𝑆𝑆 “Maximum Entropy Principle”
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�𝐻𝐻𝑗𝑗 �𝒑𝒑 ≔ min
𝑆𝑆 ≤𝑗𝑗

𝐻𝐻 �𝒑𝒑𝑆𝑆 + �
𝑖𝑖∉𝑆𝑆

𝐻𝐻 �𝒑𝒑𝑖𝑖 �𝒑𝒑𝑆𝑆  where 𝐻𝐻 �𝒑𝒑𝑖𝑖 �𝒑𝒑𝑆𝑆 ≔ 𝔼𝔼𝜏𝜏∼�𝒑𝒑𝑆𝑆 𝐻𝐻 �𝒑𝒑𝑖𝑖𝜏𝜏

Lemma.  For every 0 ≤ 𝑗𝑗 ≤ 𝑘𝑘 − 1, the function �𝒑𝒑 ↦ 𝐻𝐻𝑗𝑗 �𝒑𝒑  over SA 𝑘𝑘; 𝑛𝑛  satisfies:

1) For every genuine probability distribution 𝜇𝜇, 𝐻𝐻 𝜇𝜇 ≤ �𝐻𝐻𝑗𝑗 𝜇𝜇

Mean-field entropy

�
𝑣𝑣

𝐻𝐻 𝒑𝒑𝑣𝑣

Bethe entropy

�
𝑒𝑒

𝐻𝐻 𝒑𝒑𝑒𝑒 −�
𝑣𝑣

deg 𝑣𝑣 − 1 𝐻𝐻 𝒑𝒑𝑣𝑣

Augmented pseudo-entropy

𝐻𝐻 𝒑𝒑𝑆𝑆 + �
𝑖𝑖∉𝑆𝑆

𝐻𝐻 𝒑𝒑𝑖𝑖 𝒑𝒑𝑆𝑆

𝑆𝑆
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�𝐻𝐻𝑗𝑗 �𝒑𝒑 ≔ min
𝑆𝑆 ≤𝑗𝑗

𝐻𝐻 �𝒑𝒑𝑆𝑆 + �
𝑖𝑖∉𝑆𝑆

𝐻𝐻 �𝒑𝒑𝑖𝑖 �𝒑𝒑𝑆𝑆  where 𝐻𝐻 �𝒑𝒑𝑖𝑖 �𝒑𝒑𝑆𝑆 ≔ 𝔼𝔼𝜏𝜏∼�𝒑𝒑𝑆𝑆 𝐻𝐻 �𝒑𝒑𝑖𝑖𝜏𝜏

Lemma.  For every 0 ≤ 𝑗𝑗 ≤ 𝑘𝑘 − 1, the function �𝒑𝒑 ↦ 𝐻𝐻𝑗𝑗 �𝒑𝒑  over SA 𝑘𝑘; 𝑛𝑛  satisfies:

1) For every genuine probability distribution 𝜇𝜇, 𝐻𝐻 𝜇𝜇 ≤ �𝐻𝐻𝑗𝑗 𝜇𝜇

2) The function is concave over SA 𝑘𝑘; 𝑛𝑛

Proof.

• SA 𝑘𝑘; 𝑛𝑛  is convex: for �𝒑𝒑, �𝒒𝒒 ∈ SA 𝑘𝑘; 𝑛𝑛 , 𝜆𝜆�𝒑𝒑 + 1 − 𝜆𝜆 �𝒒𝒒 ∈ SA 𝑘𝑘; 𝑛𝑛

• Concavity is preserved under ∑ and min ⟹ It suffices to show that 𝐻𝐻 �𝒑𝒑𝑆𝑆  and 𝐻𝐻 �𝒑𝒑𝑖𝑖 �𝒑𝒑𝑆𝑆  are concave

• Follows from the standard proof of concavity of Shannon entropy
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�𝐻𝐻𝑗𝑗 �𝒑𝒑 ≔ min
𝑆𝑆 ≤𝑗𝑗

𝐻𝐻 �𝒑𝒑𝑆𝑆 + �
𝑖𝑖∉𝑆𝑆

𝐻𝐻 �𝒑𝒑𝑖𝑖 �𝒑𝒑𝑆𝑆  where 𝐻𝐻 �𝒑𝒑𝑖𝑖 �𝒑𝒑𝑆𝑆 ≔ 𝔼𝔼𝜏𝜏∼�𝒑𝒑𝑆𝑆 𝐻𝐻 �𝒑𝒑𝑖𝑖𝜏𝜏

Lemma.  For every 0 ≤ 𝑗𝑗 ≤ 𝑘𝑘 − 1, the function �𝒑𝒑 ↦ 𝐻𝐻𝑗𝑗 �𝒑𝒑  over SA 𝑘𝑘; 𝑛𝑛  satisfies:

1) For every genuine probability distribution 𝜇𝜇, 𝐻𝐻 𝜇𝜇 ≤ �𝐻𝐻𝑗𝑗 𝜇𝜇

2) The function is concave over SA 𝑘𝑘; 𝑛𝑛

• By 1),  ℱSA 𝑘𝑘; 𝑛𝑛 ,𝑗𝑗 ≔ sup
�𝒑𝒑∈SA 𝑘𝑘; 𝑛𝑛

�𝔼𝔼 𝑓𝑓 + �𝐻𝐻𝑗𝑗 �𝒑𝒑 ≥ ℱ

• By 2),  ℱSA 𝑘𝑘; 𝑛𝑛 ,𝑗𝑗 is a constrained convex optimization problem of size 𝑛𝑛𝒪𝒪 𝑘𝑘 , which can be solved in 
𝑛𝑛𝒪𝒪 𝑘𝑘 -time
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Theorem 3 (Risteski ’16).

For a symmetric interaction matrix 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑛𝑛, and consider the Ising Gibbs measure 

𝜇𝜇 𝜎𝜎 ∝ 𝑒𝑒𝑓𝑓 𝜎𝜎  where 𝑓𝑓 𝜎𝜎 =
1
2
𝜎𝜎⊤𝐴𝐴𝐴𝐴

For 0 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2, 

0 ≤ ℱSA 𝑘𝑘+2; 𝑛𝑛 ,𝑘𝑘 − ℱ ≤ 𝒪𝒪 ⁄𝑛𝑛 𝐴𝐴 𝐹𝐹 𝑘𝑘

Moreover, if �𝒑𝒑 is the optimal pseudo-distribution, then we can round it into a product measure 𝜋𝜋 satisfying

ℱ − 𝔼𝔼𝜋𝜋 𝑓𝑓 + 𝐻𝐻 𝜋𝜋 ≤ 𝒪𝒪 ⁄𝑛𝑛 𝐴𝐴 𝐹𝐹 𝑘𝑘 + 𝑘𝑘

𝑛𝑛 𝐴𝐴 𝐹𝐹
⁄2 3 by balancing the two terms

ℱ − ℱNMF ≤
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• Let �𝑝𝑝 be the optimal pseudo-distribution. Fix 𝑆𝑆 ⊆ [𝑛𝑛] with 𝑆𝑆 ≤ 𝑘𝑘

• Define a mixture of product distributions:

• Sample 𝜏𝜏 ∼ �𝑝𝑝𝑆𝑆
• Sample 𝜎𝜎 ∈ ±1 𝑛𝑛 according to a product measure 𝜋𝜋𝜏𝜏 defined by:

𝜋𝜋𝑖𝑖𝜏𝜏 = �
𝛿𝛿𝜏𝜏𝑖𝑖  ∀𝑖𝑖 ∈ 𝑆𝑆
�𝑝𝑝𝑖𝑖𝜏𝜏 ∀𝑖𝑖 ∉ 𝑆𝑆

• We’ll prove that for the optimal 𝑆𝑆⋆ ⊆ 𝑛𝑛  with 𝑆𝑆⋆ ≤ 𝑘𝑘,

ℱSA 𝑘𝑘+2; 𝑛𝑛 ,𝑘𝑘 − 𝔼𝔼𝜈𝜈 𝑓𝑓 + 𝐻𝐻 𝜈𝜈 ≤ 𝒪𝒪 ⁄𝑛𝑛 𝐴𝐴 𝐹𝐹 𝑘𝑘  where 𝜈𝜈 = 𝔼𝔼𝜏𝜏∼ �𝑝𝑝𝑆𝑆⋆ 𝜋𝜋
𝜏𝜏

• Since 𝔼𝔼𝜈𝜈 𝑓𝑓 + 𝐻𝐻 𝜈𝜈 ≤ ℱ, it implies that ℱSA 𝑘𝑘+2; 𝑛𝑛 ,𝑘𝑘 − ℱ ≤ 𝒪𝒪 ⁄𝑛𝑛 𝐴𝐴 𝐹𝐹 𝑘𝑘

𝜎𝜎𝑆𝑆 ≔ 𝜏𝜏



Rounding the pseudo-distribution

October 16, 2025 27

• Let �𝑝𝑝 be the optimal pseudo-distribution. Fix 𝑆𝑆 ⊆ [𝑛𝑛] with 𝑆𝑆 ≤ 𝑘𝑘

• Define a mixture of product distributions:

• Sample 𝜏𝜏 ∼ �𝑝𝑝𝑆𝑆
• Sample 𝜎𝜎 ∈ ±1 𝑛𝑛 according to a product measure 𝜋𝜋𝜏𝜏 defined by:

𝜋𝜋𝑖𝑖𝜏𝜏 = �
𝛿𝛿𝜏𝜏𝑖𝑖  ∀𝑖𝑖 ∈ 𝑆𝑆
�𝑝𝑝𝑖𝑖𝜏𝜏 ∀𝑖𝑖 ∉ 𝑆𝑆

• We’ll prove that for the optimal 𝑆𝑆⋆ ⊆ 𝑛𝑛  with 𝑆𝑆⋆ ≤ 𝑘𝑘,

ℱSA 𝑘𝑘+2; 𝑛𝑛 ,𝑘𝑘 − 𝔼𝔼𝜈𝜈 𝑓𝑓 + 𝐻𝐻 𝜈𝜈 ≤ 𝒪𝒪 ⁄𝑛𝑛 𝐴𝐴 𝐹𝐹 𝑘𝑘  where 𝜈𝜈 = 𝔼𝔼𝜏𝜏∼ �𝑝𝑝𝑆𝑆⋆ 𝜋𝜋
𝜏𝜏

• For rounding, notice that 𝐻𝐻 𝜈𝜈 = 𝐻𝐻 �𝑝𝑝𝑆𝑆⋆ + 𝔼𝔼𝜏𝜏∼ �𝑝𝑝𝑆𝑆⋆ 𝐻𝐻 𝜋𝜋𝜏𝜏 ≤ 𝑆𝑆⋆ + 𝔼𝔼𝜏𝜏∼ �𝑝𝑝𝑆𝑆⋆ 𝐻𝐻 𝜋𝜋𝜏𝜏 ≤ 𝒪𝒪 𝑘𝑘 +
𝔼𝔼𝜏𝜏∼ �𝑝𝑝𝑆𝑆⋆ 𝐻𝐻 𝜋𝜋𝜏𝜏 . We can take 𝜏𝜏⋆ that maximizes 𝔼𝔼𝜋𝜋𝜏𝜏 𝑓𝑓 + 𝐻𝐻 𝜋𝜋𝜏𝜏 :

ℱ − 𝔼𝔼𝜋𝜋𝜏𝜏⋆ 𝑓𝑓 + 𝐻𝐻 𝜋𝜋𝜏𝜏⋆ ≤ ℱSA 𝑘𝑘+2; 𝑛𝑛 ,𝑘𝑘 − 𝔼𝔼𝜋𝜋𝜏𝜏⋆ 𝑓𝑓 + 𝐻𝐻 𝜋𝜋𝜏𝜏⋆ ≤ 𝒪𝒪 ⁄𝑛𝑛 𝐴𝐴 𝐹𝐹 𝑘𝑘 + 𝑘𝑘

𝜎𝜎𝑆𝑆 ≔ 𝜏𝜏
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• Let �𝑝𝑝 be the optimal pseudo-distribution. Fix 𝑆𝑆 ⊆ [𝑛𝑛] with 𝑆𝑆 ≤ 𝑘𝑘

• Define a mixture of product distributions:

• Sample 𝜏𝜏 ∼ �𝑝𝑝𝑆𝑆
• Sample 𝜎𝜎 ∈ ±1 𝑛𝑛 according to a product measure 𝜋𝜋𝜏𝜏 defined by:

𝜋𝜋𝑖𝑖𝜏𝜏 = �
𝛿𝛿𝜏𝜏𝑖𝑖  ∀𝑖𝑖 ∈ 𝑆𝑆
�𝑝𝑝𝑖𝑖𝜏𝜏 ∀𝑖𝑖 ∉ 𝑆𝑆

𝜎𝜎𝑆𝑆 ≔ 𝜏𝜏

∃ 𝑆𝑆⋆ ⊆ 𝑛𝑛  with 𝑆𝑆⋆ ≤ 𝑘𝑘,
ℱSA 𝑘𝑘+2; 𝑛𝑛 ,𝑘𝑘 − 𝔼𝔼𝜈𝜈 𝑓𝑓 + 𝐻𝐻 𝜈𝜈 ≤ 𝒪𝒪 ⁄𝑛𝑛 𝐴𝐴 𝐹𝐹 𝑘𝑘  where 𝜈𝜈 = 𝔼𝔼𝜏𝜏∼ �𝑝𝑝𝑆𝑆⋆ 𝜋𝜋

𝜏𝜏

We postpone the proof to the end, since it builds upon the techniques for proving the 
NMF error bounds (Theorems 1 and 2).
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Theorem 1 (Jain-Koehler-Risteski ’19).

For a symmetric interaction matrix 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑛𝑛, and consider the Ising Gibbs measure 

𝜇𝜇 𝜎𝜎 ∝ 𝑒𝑒𝑓𝑓 𝜎𝜎  where 𝑓𝑓 𝜎𝜎 =
1
2𝜎𝜎

⊤𝐴𝐴𝐴𝐴

Then, ℱ − ℱNMF = 𝒪𝒪 𝑛𝑛 ⁄2 3 𝐴𝐴 𝐹𝐹
⁄2 3

Theorem 2 (Eldan ’20).

For a symmetric interaction matrix 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑛𝑛, and consider the Ising Gibbs measure 

𝜇𝜇 𝜎𝜎 ∝ 𝑒𝑒𝑓𝑓 𝜎𝜎  where 𝑓𝑓 𝜎𝜎 =
1
2
𝜎𝜎⊤𝐴𝐴𝐴𝐴

Then, ℱ − ℱNMF ≤ 3 log det 𝐼𝐼 + 𝐿𝐿 ⁄1 2Cov 𝜇𝜇 𝐿𝐿 ⁄1 2 , where 𝐿𝐿 ≔ 𝐴𝐴2 ⁄1 2
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Lemma.  Suppose we can decompose 𝜇𝜇 𝜎𝜎 ∝ 𝑒𝑒𝑓𝑓 𝜎𝜎  as a mixture 𝔼𝔼𝜃𝜃∼𝜉𝜉 𝜇𝜇 𝜃𝜃 , where 𝜉𝜉 is a distribution over 
some auxiliary state space ℐ, and each component measure 𝜇𝜇 𝜃𝜃  is again a distribution over ±1 𝑛𝑛. Assume 
this decomposition admits the following properties:

• “Low-entropy” mixture:
𝐻𝐻 𝜇𝜇 − 𝔼𝔼𝜃𝜃∼𝜉𝜉 𝐻𝐻 𝜇𝜇 𝜃𝜃 ≤ 𝛼𝛼

• “Near-product” components:

𝔼𝔼𝜃𝜃∼𝜉𝜉 𝔼𝔼𝜇𝜇 𝜃𝜃 𝑓𝑓 − 𝔼𝔼𝜋𝜋 𝜇𝜇 𝜃𝜃 𝑓𝑓 ≤ 𝜂𝜂

Then ℱ − ℱNMF ≤ 𝛼𝛼 + 𝜂𝜂 𝜋𝜋 𝜇𝜇 𝜃𝜃  the unique product measure with 
the same marginals as 𝜇𝜇
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• According to the Gibbs Variational Principle,

ℱ = 𝔼𝔼𝜎𝜎∼𝜇𝜇 𝑓𝑓 𝜎𝜎 + 𝐻𝐻 𝜇𝜇 = 𝔼𝔼𝜃𝜃∼𝜉𝜉 𝔼𝔼𝜎𝜎∼𝜇𝜇 𝜃𝜃 𝑓𝑓 𝜎𝜎 + 𝐻𝐻 𝜇𝜇 𝜃𝜃 + 𝐻𝐻 𝜇𝜇 − 𝔼𝔼𝜃𝜃∼𝜉𝜉 𝐻𝐻 𝜇𝜇 𝜃𝜃

≤ 𝔼𝔼𝜃𝜃∼𝜉𝜉 𝔼𝔼𝜎𝜎∼𝜇𝜇 𝜃𝜃 𝑓𝑓 𝜎𝜎 + 𝐻𝐻 𝜇𝜇 𝜃𝜃 + 𝛼𝛼

• According to the Maximum Entropy Principle, 𝐻𝐻 𝜇𝜇 𝜃𝜃 ≤ 𝐻𝐻 𝜋𝜋 𝜇𝜇 𝜃𝜃

• Therefore,

ℱ ≤ 𝔼𝔼𝜃𝜃∼𝜉𝜉 𝔼𝔼𝜎𝜎∼𝜇𝜇 𝜃𝜃 𝑓𝑓 𝜎𝜎 + 𝐻𝐻 𝜋𝜋 𝜇𝜇 𝜃𝜃 + 𝛼𝛼

≤ 𝔼𝔼𝜃𝜃∼𝜉𝜉 𝔼𝔼𝜎𝜎∼𝜋𝜋 𝜇𝜇 𝜃𝜃 𝑓𝑓 𝜎𝜎 + 𝐻𝐻 𝜋𝜋 𝜇𝜇 𝜃𝜃 + 𝛼𝛼 + 𝔼𝔼𝜇𝜇 𝜃𝜃 𝑓𝑓 − 𝔼𝔼𝜋𝜋 𝜇𝜇 𝜃𝜃 𝑓𝑓
≤ ℱNMF + 𝛼𝛼 + 𝜂𝜂

∎
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Pinning Lemma.  Let 𝜇𝜇 be any probability measure over ±1 𝑛𝑛. Then for every ℓ ∈ 𝑛𝑛 , there exists 𝑆𝑆 ⊆ 𝑛𝑛  
with 𝑆𝑆 ≤ ℓ − 1 such that

𝔼𝔼𝜏𝜏∼𝜇𝜇𝑆𝑆 𝔼𝔼 𝑖𝑖,𝑗𝑗 ∼Unif 𝑛𝑛
2

Cov𝜎𝜎∼𝜇𝜇𝜏𝜏 𝜎𝜎𝑖𝑖 ,𝜎𝜎𝑗𝑗
2 ≤

2
ℓ

Theorem 1 (Jain-Koehler-Risteski ’19).

For a symmetric interaction matrix 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑛𝑛, and consider the Ising Gibbs measure 

𝜇𝜇 𝜎𝜎 ∝ 𝑒𝑒𝑓𝑓 𝜎𝜎  where 𝑓𝑓 𝜎𝜎 =
1
2
𝜎𝜎⊤𝐴𝐴𝐴𝐴

Then, ℱ − ℱNMF = 𝒪𝒪 𝑛𝑛 ⁄2 3 𝐴𝐴 𝐹𝐹
⁄2 3

Cov 𝑋𝑋,𝑌𝑌 ≔ 𝔼𝔼 𝑋𝑋 − 𝔼𝔼 𝑋𝑋 𝑌𝑌 − 𝔼𝔼 𝑌𝑌
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Pinning Lemma.  Let 𝜇𝜇 be any probability measure over ±1 𝑛𝑛. Then for every ℓ ∈ 𝑛𝑛 , there exists 𝑆𝑆 ⊆ 𝑛𝑛  
with 𝑆𝑆 ≤ ℓ − 1 such that

𝔼𝔼𝜏𝜏∼𝜇𝜇𝑆𝑆 𝔼𝔼 𝑖𝑖,𝑗𝑗 ∼Unif 𝑛𝑛
2

Cov𝜎𝜎∼𝜇𝜇𝜏𝜏 𝜎𝜎𝑖𝑖 ,𝜎𝜎𝑗𝑗
2 ≤

2
ℓ

Proof of Theorem 1.

• Let ℓ = 𝒪𝒪 ⁄1 𝜖𝜖2  and apply the Pinning Lemma, which gives a subset 𝑆𝑆 of size 𝒪𝒪 ⁄1 𝜖𝜖2

• Let the mixture distribution 𝜉𝜉 ≔ 𝜇𝜇𝑆𝑆

• 𝜇𝜇𝑆𝑆 is supported on a set of size 2 𝑆𝑆 . Thus, 𝐻𝐻 𝜉𝜉 ≤ 𝑆𝑆 = 𝒪𝒪 ⁄1 𝜖𝜖2

• 𝐻𝐻 𝜇𝜇 − 𝔼𝔼𝜃𝜃∼𝜉𝜉 𝐻𝐻 𝜇𝜇 𝜃𝜃 ≤ 𝐻𝐻 𝜉𝜉  (by the chain rule of conditional entropy)

• Hence, 𝛼𝛼 = 𝒪𝒪 ⁄1 𝜖𝜖2

Cov 𝑋𝑋,𝑌𝑌 ≔ 𝔼𝔼 𝑋𝑋 − 𝔼𝔼 𝑋𝑋 𝑌𝑌 − 𝔼𝔼 𝑌𝑌

“Entropy-covariance trade-off”
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Pinning Lemma.  Let 𝜇𝜇 be any probability measure over ±1 𝑛𝑛. Then for every ℓ ∈ 𝑛𝑛 , there exists 𝑆𝑆 ⊆ 𝑛𝑛  
with 𝑆𝑆 ≤ ℓ − 1 such that

𝔼𝔼𝜏𝜏∼𝜇𝜇𝑆𝑆 𝔼𝔼 𝑖𝑖,𝑗𝑗 ∼Unif 𝑛𝑛
2

Cov𝜎𝜎∼𝜇𝜇𝜏𝜏 𝜎𝜎𝑖𝑖 ,𝜎𝜎𝑗𝑗
2 ≤

2
ℓ

Proof of Theorem 1.

• Recall that 𝑓𝑓 𝜎𝜎 = 1
2
𝜎𝜎⊤𝐴𝐴𝐴𝐴

• 𝔼𝔼𝜎𝜎∼𝜇𝜇𝜏𝜏 𝑓𝑓 𝜎𝜎 = 1
2
∑𝑖𝑖𝑖𝑖 𝐴𝐴𝑖𝑖𝑖𝑖𝔼𝔼𝜎𝜎∼𝜇𝜇𝜏𝜏 𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗  and 𝔼𝔼𝜎𝜎∼𝜋𝜋 𝜇𝜇𝜏𝜏 𝑓𝑓 𝜎𝜎 = 1

2
∑𝑖𝑖𝑖𝑖 𝐴𝐴𝑖𝑖𝑖𝑖𝔼𝔼𝜎𝜎∼𝜇𝜇𝜏𝜏 𝜎𝜎𝑖𝑖 𝔼𝔼𝜎𝜎∼𝜇𝜇𝜏𝜏 𝜎𝜎𝑗𝑗

• 𝔼𝔼𝜎𝜎∼𝜇𝜇𝜏𝜏 𝑓𝑓 𝜎𝜎 − 𝔼𝔼𝜎𝜎∼𝜋𝜋 𝜇𝜇𝜏𝜏 𝑓𝑓 𝜎𝜎 = 1
2
∑𝑖𝑖𝑖𝑖 𝐴𝐴𝑖𝑖𝑖𝑖𝔼𝔼𝜎𝜎∼𝜇𝜇𝜏𝜏 Cov𝜎𝜎∼𝜇𝜇𝜏𝜏 𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗 = 1

2
tr 𝐴𝐴 ⋅ Cov 𝜇𝜇𝜏𝜏

Cov 𝑋𝑋,𝑌𝑌 ≔ 𝔼𝔼 𝑋𝑋 − 𝔼𝔼 𝑋𝑋 𝑌𝑌 − 𝔼𝔼 𝑌𝑌



Decomposition via Pinning

October 16, 2025 35

Pinning Lemma.  Let 𝜇𝜇 be any probability measure over ±1 𝑛𝑛. Then for every ℓ ∈ 𝑛𝑛 , there exists 𝑆𝑆 ⊆ 𝑛𝑛  
with 𝑆𝑆 ≤ ℓ − 1 such that

𝔼𝔼𝜏𝜏∼𝜇𝜇𝑆𝑆 𝔼𝔼 𝑖𝑖,𝑗𝑗 ∼Unif 𝑛𝑛
2

Cov𝜎𝜎∼𝜇𝜇𝜏𝜏 𝜎𝜎𝑖𝑖 ,𝜎𝜎𝑗𝑗
2 ≤

2
ℓ

Proof of Theorem 1.

2𝔼𝔼𝜏𝜏∼𝜇𝜇𝑆𝑆 𝔼𝔼𝜎𝜎∼𝜇𝜇𝜏𝜏 𝑓𝑓 𝜎𝜎 − 𝔼𝔼𝜎𝜎∼𝜋𝜋 𝜇𝜇𝜏𝜏 𝑓𝑓 𝜎𝜎 = tr 𝐴𝐴 ⋅ 𝔼𝔼𝜏𝜏∼𝜇𝜇𝑆𝑆 Cov 𝜇𝜇𝜏𝜏

≤ 𝐴𝐴 𝐹𝐹 ⋅ 𝔼𝔼𝜏𝜏∼𝜇𝜇𝑆𝑆 Cov 𝜇𝜇𝜏𝜏
𝐹𝐹

≤ 𝐴𝐴 𝐹𝐹 ⋅ 𝔼𝔼𝜏𝜏∼𝜇𝜇𝑆𝑆 Cov 𝜇𝜇𝜏𝜏 𝐹𝐹
2 ⁄1 2

= 𝒪𝒪 𝜖𝜖𝜖𝜖 𝐴𝐴 𝐹𝐹

• Thus, 𝜂𝜂 = 𝒪𝒪 𝜖𝜖𝜖𝜖 𝐴𝐴 𝐹𝐹 . We have ℱ − ℱ𝑁𝑁𝑁𝑁𝑁𝑁 ≤ 𝒪𝒪 ⁄1 𝜖𝜖2 + 𝜖𝜖𝜖𝜖 𝐴𝐴 𝐹𝐹 = 𝒪𝒪 𝑛𝑛 ⁄2 3 𝐴𝐴 𝐹𝐹
⁄2 3

∎

Cov 𝑋𝑋,𝑌𝑌 ≔ 𝔼𝔼 𝑋𝑋 − 𝔼𝔼 𝑋𝑋 𝑌𝑌 − 𝔼𝔼 𝑌𝑌
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• Recall that the mutual information 𝐼𝐼 𝑋𝑋;𝑌𝑌  is defined by:
𝐼𝐼 𝑋𝑋;𝑌𝑌 ≔ 𝐷𝐷KL Law 𝑋𝑋,𝑌𝑌 ||Law 𝑋𝑋 ⊗ Law 𝑌𝑌 = 𝐻𝐻 𝑋𝑋 − 𝐻𝐻 𝑋𝑋 𝑌𝑌

• Fact.  Let 𝑋𝑋,𝑌𝑌 be {±1}-valued random variables. Then Cov 𝑋𝑋,𝑌𝑌 2 ≤ 2𝐼𝐼 𝑋𝑋;𝑌𝑌  

• We’ll prove that ∃𝑆𝑆, 𝔼𝔼 𝑖𝑖,𝑗𝑗 ∼Unif 𝑛𝑛
2

𝐼𝐼 𝜎𝜎𝑖𝑖;𝜎𝜎𝑗𝑗 𝜎𝜎𝑆𝑆 ≤ 1
ℓ

• For any 𝑖𝑖1, … , 𝑖𝑖ℓ, 𝑗𝑗 ∈ 𝑛𝑛 ,

1
ℓ
�
𝑡𝑡=1

ℓ

𝐼𝐼 𝜎𝜎𝑖𝑖𝑡𝑡;𝜎𝜎𝑗𝑗 𝜎𝜎𝑖𝑖1 , … ,𝜎𝜎𝑖𝑖𝑡𝑡−1 =
1
ℓ
�
𝑡𝑡=1

ℓ

𝐻𝐻 𝜎𝜎𝑗𝑗 𝜎𝜎𝑖𝑖1 , … ,𝜎𝜎𝑖𝑖𝑡𝑡−1 − 𝐻𝐻 𝜎𝜎𝑗𝑗 𝜎𝜎𝑖𝑖1 , … ,𝜎𝜎𝑖𝑖𝑡𝑡−1 ,𝜎𝜎𝑖𝑖𝑡𝑡

=
1
ℓ
𝐻𝐻 𝜎𝜎𝑗𝑗 − 𝐻𝐻 𝜎𝜎𝑗𝑗 𝜎𝜎𝑖𝑖1 , … ,𝜎𝜎𝑖𝑖ℓ ≤

1
ℓ

𝐼𝐼 𝜎𝜎𝑖𝑖;𝜎𝜎𝑗𝑗 𝜎𝜎𝑆𝑆 = 𝐻𝐻 𝜎𝜎𝑗𝑗 𝜎𝜎𝑆𝑆 − 𝐻𝐻 𝜎𝜎𝑗𝑗 𝜎𝜎𝑆𝑆∪ 𝑖𝑖

telescoping sum
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• We’ll prove that ∃𝑆𝑆, 𝔼𝔼 𝑖𝑖,𝑗𝑗 ∼Unif 𝑛𝑛
2

𝐼𝐼 𝜎𝜎𝑖𝑖;𝜎𝜎𝑗𝑗 𝜎𝜎𝑆𝑆 ≤ 1
ℓ

• For any 𝑖𝑖1, … , 𝑖𝑖ℓ, 𝑗𝑗 ∈ 𝑛𝑛 ,

1
ℓ
�
𝑡𝑡=1

ℓ

𝐼𝐼 𝜎𝜎𝑖𝑖𝑡𝑡;𝜎𝜎𝑗𝑗 𝜎𝜎𝑖𝑖1 , … ,𝜎𝜎𝑖𝑖𝑡𝑡−1 =
1
ℓ
�
𝑡𝑡=1

ℓ

𝐻𝐻 𝜎𝜎𝑗𝑗 𝜎𝜎𝑖𝑖1 , … ,𝜎𝜎𝑖𝑖𝑡𝑡−1 − 𝐻𝐻 𝜎𝜎𝑗𝑗 𝜎𝜎𝑖𝑖1 , … ,𝜎𝜎𝑖𝑖𝑡𝑡−1 ,𝜎𝜎𝑖𝑖𝑡𝑡

=
1
ℓ
𝐻𝐻 𝜎𝜎𝑗𝑗 − 𝐻𝐻 𝜎𝜎𝑗𝑗 𝜎𝜎𝑖𝑖1 , … ,𝜎𝜎𝑖𝑖ℓ ≤

1
ℓ

• Averaging over 𝑖𝑖1, … , 𝑖𝑖ℓ, 𝑗𝑗, we get that

1
ℓ
�
𝑡𝑡=1

ℓ

𝔼𝔼𝑖𝑖1,…,𝑖𝑖𝑡𝑡−1∼ 𝑛𝑛 𝔼𝔼𝑖𝑖𝑡𝑡,𝑗𝑗∼ 𝑛𝑛 𝐼𝐼 𝜎𝜎𝑖𝑖𝑡𝑡;𝜎𝜎𝑗𝑗 𝜎𝜎𝑖𝑖1 , … ,𝜎𝜎𝑖𝑖𝑡𝑡−1 ≤
1
ℓ

• Therefore, there must be an 𝑆𝑆 = 𝑖𝑖1, … , 𝑖𝑖𝑡𝑡−1  for some 𝑡𝑡 ≤ ℓ that satisfies the condition

∎



SA approximation error

October 16, 2025 38

Theorem 3 (Risteski ’16).

For a symmetric interaction matrix 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑛𝑛, and consider the Ising Gibbs measure 

𝜇𝜇 𝜎𝜎 ∝ 𝑒𝑒𝑓𝑓 𝜎𝜎  where 𝑓𝑓 𝜎𝜎 =
1
2
𝜎𝜎⊤𝐴𝐴𝐴𝐴

For 0 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 2, 

0 ≤ ℱSA 𝑘𝑘+2; 𝑛𝑛 ,𝑘𝑘 − ℱ ≤ 𝒪𝒪 ⁄𝑛𝑛 𝐴𝐴 𝐹𝐹 𝑘𝑘

Moreover, if �𝒑𝒑 is the optimal pseudo-distribution, then we can round it into a product measure 𝜋𝜋 satisfying

ℱ − 𝔼𝔼𝜋𝜋 𝑓𝑓 + 𝐻𝐻 𝜋𝜋 ≤ 𝒪𝒪 ⁄𝑛𝑛 𝐴𝐴 𝐹𝐹 𝑘𝑘 + 𝑘𝑘
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• Let �𝑝𝑝 be the optimal pseudo-distribution. Fix 𝑆𝑆 ⊆ [𝑛𝑛] with 𝑆𝑆 ≤ 𝑘𝑘

• Define a mixture of distributions:

• Sample 𝜏𝜏 ∼ �𝑝𝑝𝑆𝑆
• Sample 𝜎𝜎 ∈ ±1 𝑛𝑛 according to a product measure 𝜋𝜋𝜏𝜏 defined by:

𝜋𝜋𝑖𝑖𝜏𝜏 = �
𝛿𝛿𝜏𝜏𝑖𝑖  ∀𝑖𝑖 ∈ 𝑆𝑆
�𝑝𝑝𝑖𝑖𝜏𝜏 ∀𝑖𝑖 ∉ 𝑆𝑆

𝜎𝜎𝑆𝑆 ≔ 𝜏𝜏

∃ 𝑆𝑆⋆ ⊆ 𝑛𝑛  with 𝑆𝑆⋆ ≤ 𝑘𝑘,
ℱSA 𝑘𝑘+2; 𝑛𝑛 ,𝑘𝑘 − 𝔼𝔼𝜈𝜈 𝑓𝑓 + 𝐻𝐻 𝜈𝜈 ≤ 𝒪𝒪 ⁄𝑛𝑛 𝐴𝐴 𝐹𝐹 𝑘𝑘  where 𝜈𝜈 = 𝔼𝔼𝜏𝜏∼ �𝑝𝑝𝑆𝑆⋆ 𝜋𝜋

𝜏𝜏
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• The Pinning Lemma also works for 𝔉𝔉𝑘𝑘+2-pseudo-distributions when pinning up to 𝑘𝑘 coordinates

• There exists 𝑆𝑆⋆ ⊆ 𝑛𝑛  with 𝑆𝑆⋆ ≤ 𝑘𝑘 such that

𝔼𝔼𝜏𝜏∼�𝒑𝒑𝑆𝑆⋆ 𝔼𝔼 𝑖𝑖,𝑗𝑗 ∼Unif 𝑛𝑛
2

�Cov𝜎𝜎∼�𝒑𝒑𝜏𝜏 𝜎𝜎𝑖𝑖,𝜎𝜎𝑗𝑗
2 ≤

2
𝑘𝑘

where �Cov𝜎𝜎∼�𝒑𝒑𝜏𝜏 𝜎𝜎𝑖𝑖 ,𝜎𝜎𝑗𝑗 ≔ �𝔼𝔼�𝒑𝒑𝑖𝑖𝑖𝑖𝜏𝜏 𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗 − �𝔼𝔼�𝒑𝒑𝑖𝑖𝜏𝜏 𝜎𝜎𝑖𝑖 ⋅ �𝔼𝔼�𝒑𝒑𝑗𝑗𝜏𝜏 𝜎𝜎𝑗𝑗  is the pseudo-covariance

• Using the same argument in the proof of Theorem 1, we get that
�𝔼𝔼 𝑓𝑓 − 𝔼𝔼𝜈𝜈 𝑓𝑓 ≤ 𝒪𝒪 ⁄𝑛𝑛 𝐴𝐴 𝐹𝐹 𝑘𝑘

• By the definition of the augmented pseudo-entropy,

�𝐻𝐻𝑘𝑘 �𝑝𝑝 ≤ 𝐻𝐻 �𝑝𝑝𝑆𝑆⋆ + �
𝑖𝑖∉𝑆𝑆⋆

𝐻𝐻 �𝑝𝑝𝑖𝑖 �𝑝𝑝𝑆𝑆⋆ = 𝐻𝐻 𝜈𝜈

• Combining them together gives ℱSA 𝑘𝑘+2; 𝑛𝑛 ,𝑘𝑘 − 𝔼𝔼𝜈𝜈 𝑓𝑓 + 𝐻𝐻 𝜈𝜈 ≤ 𝒪𝒪 ⁄𝑛𝑛 𝐴𝐴 𝐹𝐹 𝑘𝑘

∎

�𝐻𝐻𝑗𝑗 �𝒑𝒑 ≔ min
𝑆𝑆 ≤𝑗𝑗

𝐻𝐻 �𝒑𝒑𝑆𝑆 + �
𝑖𝑖∉𝑆𝑆

𝐻𝐻 �𝒑𝒑𝑖𝑖 �𝒑𝒑𝑆𝑆
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• Level-2 Sherali-Adams cannot refute it

• Degree-2 SoS can refute it:

Counterexample

• 𝑛𝑛 = 3 and 𝔉𝔉 = ∅, 1 , 2 , 3 , 1,2 , 1,3 , 2,3
• �𝑝𝑝𝑖𝑖 𝑖𝑖 = ±1 = ⁄1 2
• �𝑝𝑝𝑖𝑖𝑗𝑗 𝑖𝑖 = 1, 𝑗𝑗 = −1 = �𝑝𝑝𝑖𝑖𝑖𝑖 𝑖𝑖 = −1, 𝑗𝑗 = 1 = ⁄1 2

1 𝑥𝑥1 𝑥𝑥2 𝑥𝑥3
1

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3

Eigenvalues: 2, 2, 1,−1

1 0 0 0

0 1 −1 −1

0 −1 1 −1

0 −1 −1 1

ℳ2 ≔ ⋡ 0
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• Level-𝑘𝑘 Sherali-Adams

 𝑛𝑛𝒪𝒪 𝑘𝑘  linear constraints

• Degree-𝑘𝑘 Sum-of-Squares

 ℳ𝑘𝑘 ≽ 0 ⟺  𝑢𝑢⊤ℳ𝑘𝑘𝑢𝑢 ≥ 0 ∀𝑢𝑢 ∈ ℝ𝑛𝑛𝒪𝒪 𝑘𝑘

infinitely many linear constraints
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Theorem 2 (Eldan ’20).

For a symmetric interaction matrix 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑛𝑛, and consider the Ising Gibbs measure 

𝜇𝜇 𝜎𝜎 ∝ 𝑒𝑒𝑓𝑓 𝜎𝜎  where 𝑓𝑓 𝜎𝜎 =
1
2𝜎𝜎

⊤𝐴𝐴𝐴𝐴

Then, ℱ − ℱNMF ≤ 3 log det 𝐼𝐼 + 𝐿𝐿 ⁄1 2Cov 𝜇𝜇 𝐿𝐿 ⁄1 2 , where 𝐿𝐿 ≔ 𝐴𝐴2 ⁄1 2

• Technical tool: stochastic localization (SL)
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Theorem (Eldan ’20).

Let 𝜇𝜇 be any probability measure over ±1 𝑛𝑛. Then for every symmetric positive definite matrix 
𝐿𝐿 ≻ 0, there exists a decomposition of 𝜇𝜇 = 𝔼𝔼𝜃𝜃∼𝜉𝜉 𝜇𝜇 𝜃𝜃  enjoying the following properties:

• 𝐻𝐻 𝜇𝜇 − 𝔼𝔼𝜃𝜃∼𝜉𝜉 𝐻𝐻 𝜇𝜇 𝜃𝜃 ≤ log det 𝐼𝐼 + 𝐿𝐿 ⁄1 2Cov 𝜇𝜇 𝐿𝐿 ⁄1 2

• 𝔼𝔼𝜃𝜃∼𝜉𝜉 Cov 𝜇𝜇 𝜃𝜃 ≼ 𝐿𝐿−1

• 𝔼𝔼𝜃𝜃∼𝜉𝜉 Cov 𝜇𝜇 𝜃𝜃 𝐿𝐿Cov 𝜇𝜇 𝜃𝜃 ≼ Cov 𝜇𝜇
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We need to check the two conditions in the measure decomposition lemma:

“Low-entropy” mixture:
𝐻𝐻 𝜇𝜇 − 𝔼𝔼𝜃𝜃∼𝜉𝜉 𝐻𝐻 𝜇𝜇 𝜃𝜃 ≤ 𝛼𝛼

• 𝛼𝛼 = log det 𝐼𝐼 + 𝐿𝐿 ⁄1 2Cov 𝜇𝜇 𝐿𝐿 ⁄1 2

“Near-product” components:

𝔼𝔼𝜃𝜃∼𝜉𝜉 𝔼𝔼𝜇𝜇 𝜃𝜃 𝑓𝑓 − 𝔼𝔼𝜋𝜋 𝜇𝜇 𝜃𝜃 𝑓𝑓 ≤ 𝜂𝜂

• Following the proof of Theorem 1,

𝔼𝔼𝜃𝜃∼𝜉𝜉 𝔼𝔼𝜇𝜇 𝜃𝜃 𝑓𝑓 − 𝔼𝔼𝜋𝜋 𝜇𝜇 𝜃𝜃 𝑓𝑓 =
1
2

tr 𝐴𝐴 ⋅ 𝔼𝔼𝜃𝜃∼𝜉𝜉 Cov 𝜇𝜇 𝜃𝜃 ≤
1
2

tr 𝔼𝔼𝜃𝜃∼𝜉𝜉 𝐿𝐿 ⁄1 2Cov 𝜇𝜇 𝜃𝜃 𝐿𝐿 ⁄1 2

• 𝔼𝔼𝜃𝜃∼𝜉𝜉 𝐿𝐿1∕2Cov 𝜇𝜇 𝜃𝜃 𝐿𝐿1∕2 ≼ 𝐼𝐼 (by Eldan’s decomposition)

• 𝔼𝔼𝜃𝜃∼𝜉𝜉 Cov 𝜇𝜇 𝜃𝜃 ≼ Cov 𝜇𝜇  (by the Law of Total Covariance)

(𝐿𝐿 ≽ 𝐴𝐴)
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We need to check the two conditions in the measure decomposition lemma:

“Low-entropy” mixture:
𝐻𝐻 𝜇𝜇 − 𝔼𝔼𝜃𝜃∼𝜉𝜉 𝐻𝐻 𝜇𝜇 𝜃𝜃 ≤ 𝛼𝛼

• 𝛼𝛼 = log det 𝐼𝐼 + 𝐿𝐿 ⁄1 2Cov 𝜇𝜇 𝐿𝐿 ⁄1 2

“Near-product” components:

𝔼𝔼𝜃𝜃∼𝜉𝜉 𝔼𝔼𝜇𝜇 𝜃𝜃 𝑓𝑓 − 𝔼𝔼𝜋𝜋 𝜇𝜇 𝜃𝜃 𝑓𝑓 ≤ 𝜂𝜂

• Following the proof of Theorem 1,

𝔼𝔼𝜃𝜃∼𝜉𝜉 𝔼𝔼𝜇𝜇 𝜃𝜃 𝑓𝑓 − 𝔼𝔼𝜋𝜋 𝜇𝜇 𝜃𝜃 𝑓𝑓 =
1
2

tr 𝐴𝐴 ⋅ 𝔼𝔼𝜃𝜃∼𝜉𝜉 Cov 𝜇𝜇 𝜃𝜃 ≤
1
2

tr 𝔼𝔼𝜃𝜃∼𝜉𝜉 𝐿𝐿 ⁄1 2Cov 𝜇𝜇 𝜃𝜃 𝐿𝐿 ⁄1 2

• 𝜆𝜆𝑖𝑖 𝔼𝔼𝜃𝜃∼𝜉𝜉 𝐿𝐿 ⁄1 2Cov 𝜇𝜇 𝜃𝜃 𝐿𝐿 ⁄1 2 ≤ min 1, 𝜆𝜆𝑖𝑖 𝐿𝐿 ⁄1 2Cov 𝜇𝜇 𝐿𝐿 ⁄1 2 ≤ 2 log 1 + 𝜆𝜆𝑖𝑖 𝐿𝐿 ⁄1 2Cov 𝜇𝜇 𝐿𝐿 ⁄1 2  
(Cov 𝜇𝜇 ≽ 0)

∎
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We only prove the first two properties following the presentation in (Alaoui-Montanari ’22)

Gaussian channel localization

• 𝜇𝜇 𝜃𝜃 ≔ Law 𝜎𝜎 𝜃𝜃  and 𝜉𝜉 𝜃𝜃 ∝ 𝔼𝔼𝜎𝜎∼𝜇𝜇 𝔼𝔼𝑔𝑔∼𝒩𝒩 0,𝐼𝐼 𝟏𝟏𝜃𝜃=𝜎𝜎+𝐿𝐿− ⁄1 2𝑔𝑔

• For the first property, 
𝐻𝐻 𝜇𝜇 − 𝔼𝔼𝜃𝜃∼𝜉𝜉 𝐻𝐻 𝜇𝜇 𝜃𝜃 = 𝐻𝐻 𝜎𝜎 − 𝐻𝐻 𝜎𝜎 𝜃𝜃 = 𝐼𝐼 𝜎𝜎;𝜃𝜃 = 𝐻𝐻 𝜃𝜃 − 𝐻𝐻 𝜃𝜃 𝜎𝜎

• For 𝐻𝐻 𝜃𝜃 , by another version of Maximum Entropy Principle,

𝐻𝐻 𝜃𝜃 ≤ 𝐻𝐻 𝒩𝒩 0, Cov 𝜉𝜉 =
𝑛𝑛
2

log 2𝜋𝜋𝜋𝜋 +
1
2

tr log Cov 𝜉𝜉 =
𝑛𝑛
2

log 2𝜋𝜋𝜋𝜋 +
1
2

tr log 𝐿𝐿−1 + Cov 𝜇𝜇

𝜎𝜎 ∼ 𝜇𝜇 Gaussian 
channel 𝜃𝜃 = 𝜎𝜎 + 𝐿𝐿− ⁄1 2𝑔𝑔

𝑔𝑔 ∼ 𝒩𝒩 0, 𝐼𝐼
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We only prove the first two properties following the presentation in (Alaoui-Montanari ’22)

Gaussian channel localization

• 𝜇𝜇 𝜃𝜃 ≔ Law 𝜎𝜎 𝜃𝜃  and 𝜉𝜉 𝜃𝜃 ∝ 𝔼𝔼𝜎𝜎∼𝜇𝜇 𝔼𝔼𝑔𝑔∼𝒩𝒩 0,𝐼𝐼 𝟏𝟏𝜃𝜃=𝜎𝜎+𝐿𝐿− ⁄1 2𝑔𝑔

• For 𝐻𝐻 𝜃𝜃 𝜎𝜎 ,

𝐻𝐻 𝜃𝜃 𝜎𝜎 = 𝐻𝐻 𝐿𝐿− ⁄1 2𝑔𝑔 =
𝑛𝑛
2

log 2𝜋𝜋𝜋𝜋 +
1
2

tr log𝐿𝐿−1

• Hence, 𝐼𝐼 𝜎𝜎;𝜃𝜃 ≤ 1
2

tr log 𝐿𝐿−1 + Cov 𝜇𝜇 − 1
2

tr log𝐿𝐿−1 ≤ 1
2

log det 𝐼𝐼 + 𝐿𝐿 ⁄1 2Cov 𝜇𝜇 𝐿𝐿 ⁄1 2

𝜎𝜎 ∼ 𝜇𝜇 Gaussian 
channel 𝜃𝜃 = 𝜎𝜎 + 𝐿𝐿− ⁄1 2𝑔𝑔

𝑔𝑔 ∼ 𝒩𝒩 0, 𝐼𝐼
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We only prove the first two properties following the presentation in (Alaoui-Montanari ’22)

Gaussian channel localization

• 𝜇𝜇 𝜃𝜃 ≔ Law 𝜎𝜎 𝜃𝜃  and 𝜉𝜉 𝜃𝜃 ∝ 𝔼𝔼𝜎𝜎∼𝜇𝜇 𝔼𝔼𝑔𝑔∼𝒩𝒩 0,𝐼𝐼 𝟏𝟏𝜃𝜃=𝜎𝜎+𝐿𝐿− ⁄1 2𝑔𝑔

• For the second property, our goal is to show that 
𝔼𝔼𝜃𝜃∼𝜉𝜉 Cov 𝜇𝜇 𝜃𝜃 ≼ 𝐿𝐿−1 = Cov −𝐿𝐿− ⁄1 2𝑔𝑔 = Cov(𝜎𝜎 − 𝜃𝜃)

𝜎𝜎 ∼ 𝜇𝜇 Gaussian 
channel 𝜃𝜃 = 𝜎𝜎 + 𝐿𝐿− ⁄1 2𝑔𝑔

𝑔𝑔 ∼ 𝒩𝒩 0, 𝐼𝐼
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We only prove the first two properties following the presentation in (Alaoui-Montanari ’22)

Gaussian channel localization

• 𝜇𝜇 𝜃𝜃 ≔ Law 𝜎𝜎 𝜃𝜃  and 𝜉𝜉 𝜃𝜃 ∝ 𝔼𝔼𝜎𝜎∼𝜇𝜇 𝔼𝔼𝑔𝑔∼𝒩𝒩 0,𝐼𝐼 𝟏𝟏𝜃𝜃=𝜎𝜎+𝐿𝐿− ⁄1 2𝑔𝑔

• For the second property, our goal is to show that 
tr 𝔼𝔼𝜃𝜃∼𝜉𝜉 Cov 𝜇𝜇 𝜃𝜃 ⋅ 𝐵𝐵 ≤ tr Cov 𝜎𝜎 − 𝜃𝜃 ⋅ 𝐵𝐵  ∀ 𝐵𝐵 ≽ 0

which is further equivalent to
𝔼𝔼𝜃𝜃,𝜎𝜎 𝜎𝜎 − 𝔼𝔼 𝜎𝜎 𝜃𝜃 ⊤𝐵𝐵 𝜎𝜎 − 𝔼𝔼 𝜎𝜎 𝜃𝜃 ≤ 𝔼𝔼𝜃𝜃,𝜎𝜎 𝜎𝜎 − 𝜃𝜃 ⊤𝐵𝐵 𝜎𝜎 − 𝜃𝜃

𝜎𝜎 ∼ 𝜇𝜇 Gaussian 
channel 𝜃𝜃 = 𝜎𝜎 + 𝐿𝐿− ⁄1 2𝑔𝑔

𝑔𝑔 ∼ 𝒩𝒩 0, 𝐼𝐼
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We only prove the first two properties following the presentation in (Alaoui-Montanari ’22)

Gaussian channel localization

• For the second property,
𝔼𝔼𝜃𝜃,𝜎𝜎 𝜎𝜎 − 𝔼𝔼 𝜎𝜎 𝜃𝜃 ⊤𝐵𝐵 𝜎𝜎 − 𝔼𝔼 𝜎𝜎 𝜃𝜃 ≤ 𝔼𝔼𝜃𝜃,𝜎𝜎 𝜎𝜎 − 𝜃𝜃 ⊤𝐵𝐵 𝜎𝜎 − 𝜃𝜃

• Given 𝜃𝜃 = 𝜎𝜎 + 𝐿𝐿− ⁄1 2𝑔𝑔, how to estimate 𝜎𝜎? 

 Maximum likelihood estimator: �𝜎𝜎 = 𝜃𝜃

 Bayes estimator:  �𝜎𝜎Bayes = 𝔼𝔼 𝜎𝜎 𝜃𝜃

𝜎𝜎 ∼ 𝜇𝜇 Gaussian 
channel 𝜃𝜃 = 𝜎𝜎 + 𝐿𝐿− ⁄1 2𝑔𝑔

𝑔𝑔 ∼ 𝒩𝒩 0, 𝐼𝐼

Fact.  Bayes estimator is optimal under mean-
squared error

∎
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• The loss function is the mean-squared error weighted by 𝐵𝐵:
𝔼𝔼𝜃𝜃,𝜎𝜎 𝜎𝜎 − �𝜎𝜎 ⊤𝐵𝐵 𝜎𝜎 − �𝜎𝜎 = 𝔼𝔼𝜃𝜃,𝜎𝜎 𝜎𝜎 − �𝜎𝜎 𝐵𝐵

2

• For any estimator �𝜎𝜎 𝜃𝜃 ,

𝑟𝑟𝜃𝜃 �𝜎𝜎 ≔ 𝔼𝔼𝜎𝜎 | 𝜃𝜃 𝜎𝜎 − �𝜎𝜎 𝐵𝐵
2 = 𝔼𝔼𝜎𝜎 | 𝜃𝜃 𝜎𝜎 − �𝜎𝜎Bayes + �𝜎𝜎Bayes − �𝜎𝜎

𝐵𝐵
2

= 𝔼𝔼𝜎𝜎 | 𝜃𝜃 𝜎𝜎 − �𝜎𝜎Bayes 𝐵𝐵
2 + �𝜎𝜎Bayes − �𝜎𝜎

𝐵𝐵
2

≥ 𝑟𝑟𝜃𝜃 �𝜎𝜎Bayes

• Therefore, 

𝔼𝔼𝜃𝜃,𝜎𝜎 𝜎𝜎 − �𝜎𝜎Bayes 𝐵𝐵
2 ≤ 𝔼𝔼𝜃𝜃,𝜎𝜎 𝜎𝜎 − �𝜎𝜎 𝐵𝐵

2

for any estimaror �𝜎𝜎

(𝔼𝔼𝜎𝜎 | 𝜃𝜃 𝜎𝜎 − �𝜎𝜎Bayes = 0)

∎
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Corollary.

For a symmetric interaction matrix 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑛𝑛, and consider the Ising Gibbs measure 

𝜇𝜇 𝜎𝜎 ∝ 𝑒𝑒𝑓𝑓 𝜎𝜎  where 𝑓𝑓 𝜎𝜎 =
1
2𝜎𝜎

⊤𝐴𝐴𝐴𝐴

Then, ℱ − ℱNMF ≤ 3 ⋅ rank 𝐴𝐴 ⋅ log 𝐴𝐴 𝑛𝑛 + 1

Example 2:

• Consider 𝐴𝐴 = 𝛽𝛽
𝑛𝑛
𝟏𝟏𝟏𝟏⊤

• rank 𝐴𝐴 = 1 and 𝐴𝐴 = 𝛽𝛽

• According to the corollary, ℱ − ℱNMF ≤ 3 log 𝑛𝑛𝑛𝑛 + 1
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Corollary.

For a symmetric interaction matrix 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑛𝑛, and consider the Ising Gibbs measure 

𝜇𝜇 𝜎𝜎 ∝ 𝑒𝑒𝑓𝑓 𝜎𝜎  where 𝑓𝑓 𝜎𝜎 =
1
2𝜎𝜎

⊤𝐴𝐴𝐴𝐴

Then, ℱ − ℱNMF ≤ 3 ⋅ rank 𝐴𝐴 ⋅ log 𝐴𝐴 𝑛𝑛 + 1

Proof.

log det 𝐼𝐼 + 𝐿𝐿 ⁄1 2Cov 𝜇𝜇 𝐿𝐿 ⁄1 2 = �
𝑖𝑖∈ 𝑛𝑛

log 𝜆𝜆𝑖𝑖 𝐿𝐿 ⁄1 2Cov 𝜇𝜇 𝐿𝐿 ⁄1 2 + 1

≤ rank 𝐴𝐴 ⋅ log 𝐿𝐿 ⁄1 2Cov 𝜇𝜇 𝐿𝐿 ⁄1 2 + 1
≤ rank 𝐴𝐴 ⋅ log 𝐴𝐴 ⋅ Cov 𝜇𝜇 + 1
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Corollary.

For a symmetric interaction matrix 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑛𝑛, and consider the Ising Gibbs measure 

𝜇𝜇 𝜎𝜎 ∝ 𝑒𝑒𝑓𝑓 𝜎𝜎  where 𝑓𝑓 𝜎𝜎 =
1
2𝜎𝜎

⊤𝐴𝐴𝐴𝐴

Then, ℱ − ℱNMF ≤ 3 ⋅ rank 𝐴𝐴 ⋅ log 𝐴𝐴 𝑛𝑛 + 1

Proof.

log det 𝐼𝐼 + 𝐿𝐿 ⁄1 2Cov 𝜇𝜇 𝐿𝐿 ⁄1 2 ≤ rank 𝐴𝐴 ⋅ log 𝐴𝐴 ⋅ Cov 𝜇𝜇 + 1

• Cov 𝜇𝜇 ≤ tr Cov 𝜇𝜇 ≤ ∑𝜎𝜎∈ ±1 𝑛𝑛 𝜎𝜎 2𝜇𝜇 𝜎𝜎 ≤ 𝑛𝑛

∎
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