CS 59300 — Algorithms for Data Science
Classical and Quantum approaches

Lecture 11 (10/09)
- Sampling and variational inference

https:Ilruizhezhang.comlcoufse fall 2025.html


https://ruizhezhang.com/course_fall_2025.html

Example

Ising model
Graph ¢ = (V,E)
Parameter f € R

Configuration o € {+1, —1}" with weight:

wt(o) = exp(f - #monochromatic edges)

Gibbs distribution: msipg(0) = Zlvkt(ga()ﬁ) > Wt(;)wt(r)
sin Tef{-1,1}
e3F
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Example

Ising model
wt(o) wt(o)
Zlsing (B) 216{0’1}V wt(7)

confp Y 15220

ijEE

TMising (o) =

Sampling: can you efficiently draw samples from the Gibbs distribution mygpo?

1+O'i0'j
2

Optimization: can you minimize the Hamiltonian H(0) = X;jeg foro € {+1}V?

Partition function estimation: can you approximate Zsing() to within € error?
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Applications

Statistical inference

_ Pr[X | O] - Pr[@]

Pr[O | X] PriX]

Pr|X] = jPr[X | ©] - Pr[O] dO

Statistical mechanics and phase transitions

Graphical model:
H(o) = — Z Yij(o,0;) Vo €[q]”
ijEE
1p(0) o exp(—pH(0))

Independent sets, matchings, colorings ...
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Volume estimation

Given access to a high-dim convex body X (via
membership oracle or constraints)

Estimate Vol(X)

Fairness and Differential privacy

Detecting gerrymandering: randomly sample
redistricting plans from an appropriate
distribution

Exponential mechanism for e-DP:

m(x) o« exp(ﬁu(x,D))
where u is the utility function



Today’s plan

- A canonical approach for sampling is via Markov chains

Design a Markov chain such that the target distribution 7 is its fixed point
- Simulate the Markov chain on any initial point for T steps

- Prove the mixing time of this Markov chain

- In the past few lectures, we’ve introduced various convex relaxations and rounding algorithms

- Today, we’ll see another approach that uses relaxation+rounding: Variational Inference and Mean-field
approximation
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Starting point

Gibbs variational principle. Let () be a finite state space. Then the Shannon entropy function

pe —HG) = ) p(x) logu(x)

X€E)

on probability measures over () is smooth and strictly convex

Furthermore, for every function f: ) - R,

“free energy” F = logz e/ ™) = sup{E, -, [f(x)] + HW)}
vV

X€E()

and the supremum is uniquely attained at the Gibbs measure u(x) oc e/
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Proof of the Gibbs variational principle

For any distributions p and g over (), the KL divergence is defined as:

DxL(pllq) = Z p(x) log < q83> = —H(p) — Ey-pllogq(x)]

xX€EQ)

D1 (pllg) = 0 with equality iff p = ¢
letp :==vand q = u = el /Z; where Z; = ¥, cq e/ ™ is the partition function

Then, we have
0 < D, (vllw) = —H(W) — Exy[log(e/® /Zs)] = —HW) = Exr [f (X)] + log Z;
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Starting point

Gibbs variational principle. Let () be a finite state space. Then the Shannon entropy function

pe —HG) = ) p(x) logu(o)

X€E)

on probability measures over () is smooth and strictly convex
Furthermore, for every function f: () - R,

“free energy” F = logz el = sup{E,.,[f ()] + HW)} Issue: Q is exp large!
vV

X€E()

and the supremum is uniquely attained at the Gibbs measure u(x) o /&)

Maximizing a

Estimating log-
concave function

partition function

October 16, 2025 7



The naive mean-field approximation

Idea: restrict the class of probability measure v in the optimization

Product measure over {+1}" where n := |Q|:

Famr = sup {E, ., [f(x)] + H(v)}

v product

A

= ?ufl n{IEan(m) 1f(x)] + H(T[(m))}

Every product measure is uniquely identified by its mean vectorm € [—1,1]"

The entropy can be explicitly calculated:

n
14+ m; 1+m; 1-—m, 1—-—m;
H(n(m))=—z< > “log > e > “log > l)
i=1

For many natural f (e.g., quadratic form), E,_m[f (x)] is also easy to compute
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How good is the mean-field approximation?

The Gibbs measure u « e/ exhibits mean-field behavior (as n = o) if

F—F
NMF _ 0(1)

n

o(n)-additive approximationto F < e°™_-multiplicative approximation to Zs

Related to the asymptotic free energy density:

lim —F ~ lim —F
e o(1) J1M Y NMF

> Can derive many physically interesting quantities, e.g. magnetization, specific heat, susceptibility

> Can predict phase transitions by the differentiability/continuity/smoothness of the asymptotic free
energy density in the model parameters (e.g. )
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NMF approximation error for Ising models

Theorem 1 (Jain-Koehler-Risteski ’19).

For a symmetric interaction matrix A € R™™", and consider the Ising Gibbs measure

1
w(o) x< ef(@ where f(o) = iaTAa

Then, F — TNMF =0 (”2/3“14“123'/3)

Consider A = gAG where G is a d-regular graph and A, is the adjacency matrix

1ANZ? = (B/d)>/3(dn)*/3
F — Fnmr = 0(71,32/361_1/3) “NMF works better on dense problem”
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NMF approximation error for Ising models

Theorem 2 (Eldan ’20).

For a symmetric interaction matrix A € R™™, and consider the Ising Gibbs measure
1
w(o) x< ef(@ where f(o) = iaTAa

Then, F — Fymr < 3logdet(l + LY2Cov(u)LY/?), where L := (42)1/2

Consider A = gllT

F — Fymr < 3log(np) instead of fn?/3
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Sherali-Adams hierarchy

Low-degree function

Let f: {+1}" — R be an arbitrary function. Then there is a unique multi-affine polynomial

> f(s>1_[xi

Scn] IES
which agrees with f on {£1}"
f(S) are the Fourier coefficients of f
supp(f) == {S < [n] : £(S) 0} is the support of f ‘E

Analysis of
Boolean Functions

deg(f) := Seglglé((f)lSl is the degree of f

RYAN O'DONNELL
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Sherali-Adams pseudo-distribution

Pseudo-distribution

Let & C 21" be a downwards closed family of subsets (i.e. if T € ¥and S € T, then S € §)

An &-pseudo-distribution over {+1}" is a collection P = {Ps}sex of probability distributions ps over {+1}°
satisfying the following local consistency relations:

psltl= Prlos=1], VSTE€Fst SCT, vre{+1}
o~pr
The degree of the pseudo-distribution is rgggx |S|

For a degree-k pseudo-distribution,

#para = z 2181 < n0t)
5Cg

Every genuine distribution u is a pseudo-distribution {ug},
where g is the marginal distribution on S
Reverse direction?
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Sherali-Adams pseudo-distribution

Pseudo-distribution

Let & C 21" be a downwards closed family of subsets (i.e. if T € ¥and S € T, then S € §)
An &-pseudo-distribution over {+1}" is a collection P = {Ps}sex of probability distributions ps over {+1}°

satisfying the following local consistency relations:

psltl = Pr [os = 1], VS, TE¥ s.t. SCT, Vre{+1}S
o~pr

The degree of the pseudo-distribution is max |S]|

SEF

n=3and § = {0,{1},{2},{3},{1,2},{1,3},{2,3}} |

p;li=+1]=1/2
pijli=1j=-1]=p;li=-1,j=1]=1/2

- a degree-2 pseudo-distribution

No global distribution p,3 can exist since {1,2,3} cannot be all distinct
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Sherali-Adams pseudo-distribution

Pseudo-distribution

Let & C 2! be a downwards closed family of subsets (i.e. if T € ¥and S € T, then S € §)

An &-pseudo-distribution over {+1}" is a collection P = {Ps}sex of probability distributions ps over {+1}°
satisfying the following local consistency relations:

psltl = Pr [os = 1], VS, TE¥ s.t. SCT, Vre{+1}S
o~pr

The degree of the pseudo-distribution is rgl%x |S|

Pseudo-expectation: for any f(x) = X5 cs [1;e5 x; with supp(f) € &,

E[f] = 2 CsEggps l ]

S
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The Bethe approximation (level-2 Sherali-Adams)

Let G = (V, E) with adjacency matrix 4, and consider the Ising Gibbs measure

1
1(o) x ef@ where f(o) = EO'TAO'

Let ¥ be the downwards closure of the set of edges E, i.e. § = {0} U {{v} tVE V} U {{u, v}:uv € E}

Define the Bethe free energy by

FBethe = sup ~{E[f] + HBethe(ﬁ)}
&—pseudo—dist.p

where Hgetpe is the Bethe entropy:

Heene @) = ) H(F) = ) (deg(®) - DH(,)

eeF vev

_ 2 H(,) - z I(w: ) correct double-counting

vev UveE
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The Bethe entropy

Hpetne @) = ) H(e) — ) (deg(v) — DH(By)

eEeE VeV

Fact. Let T be a tree and p be any probability distribution defined on T. Then,

Oy, O
p(a) _ HquE puv( ;eg(z))_l Vg € {il}V

Hvev(pv(o-v))

Hp) =- ) p@logp@ = ) p(o) (Z(degw)—l)logpv(av)— > logpuku,av))

oe{+1}V oe{+1}V vEV UVEE
= z (deg(v) — 1) z py(0y,)logp,(oy,) — z Z Puv (0, 0,) log Py, (04, 03)
VeV Oy UVEE oy,0yp
= ) Hpo) = ) (deg(®) - DH(p,)
ecE vev

= Hpethe (p)
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The Bethe approximation (level-2 Sherali-Adams)

Let G = (V, E) with adjacency matrix 4, and consider the Ising Gibbs measure

1
1(o) x ef@ where f(o) = EO'TAO'

Let ¥ be the downwards closure of the set of edges E, i.e. § = {0} U {{v} tVE V} U {{u, v}:uv € E}

Define the Bethe free energy by

FBethe = sup ~{E[f] + HBethe(ﬁ)}
&—pseudo—dist.p

Widely used for approximating the free energy of sparse graphical models

The optimizer of Fgethe gives the belief propagation equations

new
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Higher-level Sherali-Adams

Define &y, = ([S"ID, and SA(k; [n]) be the set of all & -pseudo-distributions

Conditioning a pseudo-distribution

Let p € SA(k; [n]). Forany S € &x_4, and any T € {1}, define the conditional pseudo-distribution:

S
PF(0) = Pour(roo)  VTe ( i 5|>'V“ € (1"

Then, p* € SA(k — |S|; [n]\S)
Augmented pseudo-entropy

Let p € SA(k; [n]). For 0 < j < k — 1, define the j-th augmented pseudo-entropy by T

&

@) = mind H@s) + ) H@ilPs)p where H(@ils) = Eo-pgli :
LES 3
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Higher-level Sherali-Adams

Define &y, = ( ) and SA(k; [n]) be the set of all & -pseudo-distributions

Augmented pseudo-entropy

Let p € SA(k; [n]). For 0 < j < k — 1, define the j-th augmented pseudo-entropy by
B®) = min{H@s) + ) H@E[Bs)( where H@ilPs) = Eepy[HFD]
B i¢S
Sherali-Adams free energy
Let f: {+1}" —» Rwith deg(f) < k.For0 <j < k — 1, define

Fsatknhj =  Su E[f] + H: (D)
At = SUp {E[ )
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Augmented pseudo-entropy

A,(®) = min {H@) + H(ﬁims)} where H(B[Ps) = Eo-p; [H (B
LES

Forevery 0 < j < k — 1, the function p — H;(p) over SA(k; [n]) satisfies:
1)  For every genuine probability distribution u, H(u) < Hj(u)

Proof.

Let X ~ u. By the chain rule of Shannon entropy,
H(X) = H(Xs) + H(Xaps | Xs)

< H(Xs) + z H(X; | Xs) “Maximum Entropy Principle”
ie[n]\S
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Augmented pseudo-entropy

H®) = |r§l|lsr]l {H(ﬁs) + z H(ﬁims)} where H(P;|Ps) = Er5,[H®)]

LES

Lemma. Forevery 0 <j < k — 1, the function p » H;(p) over SA(k; [n]) satisfies:

1)  For every genuine probability distribution u, H(u) < Hj (n)

Mean-field entropy Bethe entropy
> Hp,) D H®) — ) (deg®) = DH(Dy)
v e v
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Augmented pseudo-entropy

(@) = min  H@s) + ) H@ilBs) | where H(Bilps) = Ecop[HBD]
LES

Forevery 0 < j < k — 1, the function p — H;(P) over SA(k; [n]) satisfies:
1)  For every genuine probability distribution u, H(u) < Hj(u)

2) The function is concave over SA(k; [n])

Proof.
SA(k; [n]) is convex: for p, g € SA(k; [n]), Ap + (1 — 1)q € SA(k; [n])
Concavity is preserved under ) and min = It suffices to show that H(ps) and H(P;|ps) are concave

Follows from the standard proof of concavity of Shannon entropy
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Augmented pseudo-entropy

H;(p) = mll_n {H (Ps) + 2 H (ﬁ'lﬁs)} where H(pP;|Ps) = Erp,[H(®7)]
i€S
Forevery 0 < j < k — 1, the function p — H;(p) over SA(k; [n]) satisfies:
1)  For every genuine probability distribution u, H(u) < Hj(u)

2) The function is concave over SA(k; [n])

By 1), Fsa(k;[n]),j = SSAl(llg[ {IE + Flj(ﬁ)} > F

By 2), Fsa(k;[n]),j IS @ constrained convex optimization problem of size n9®) which can be solved in
n9®) _time
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SA approximation error

Theorem 3 (Risteski ’16).

For a symmetric interaction matrix A € R™*"™, and consider the Ising Gibbs measure

1
1(o) x ef@ where f(o) = EO'TAO'

For0 <k <n-2,
0 < Fsak+2;ink —F < O(nllAllr/Vk)

Moreover, if P is the optimal pseudo-distribution, then we can round it into a product measure m satisfying

F—Faur < F = (Eglf] + Hm) < 0(nllAllr/Vk + k)

(n||A]l-)?/3 by balancing the two terms
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Rounding the pseudo-distribution

Let p be the optimal pseudo-distribution. Fix S € [n] with |S| < k
Define a mixture of product distributions:

Sample T ~ P

Sample o € {+1}" according to a product measure * defined by:

6;, Vi€S Og =T

T
T T vigs

We’'ll prove that for the optimal S* € [n] with |S*| < k,
Fsatk+2:n (IE ]+ H(v)) < O(nllAIIF/\/E) where v = IETNﬁS* "]

Since E,[f] + H(v) < F, itimplies that Fsak+2: [k — F < O(nllAllz/Vk)
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Rounding the pseudo-distribution

Let p be the optimal pseudo-distribution. Fix S € [n] with |S| < k
Define a mixture of product distributions:
Sample T ~ pg

Sample o € {+1}" according to a product measure * defined by:

: |6 ViES Og =T
T pE vigs
We’'ll prove that for the optimal S* € [n] with |S*| < k,
Fsatk+2:n (IE ]+ H(v)) < O(nllAIIF/\/E) where v = IETNﬁS* "]

For rounding, notice that H(v) = H(Ps*) + E:p |[H(m®)] < |S*| + Eipo |[H(mY)] < 0(k) +
Erp [H(m")]. We can take T* that maximizes E<[f] + H(n"):

F — (IE”T* [f] + H(nr*)) < TSA(k+2;[n]),k — (Enf* [f] + H(nT*)) < 0(n||A||F/\/E+ k)
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Rounding the pseudo-distribution

Let p be the optimal pseudo-distribution. Fix S € [n] with |S| < k

Define a mixture of product distributions:
Sample T ~ P

Sample o € {+1}" according to a product measure * defined by:

: |6 ViES Og =T
T T vigs
3 S* € [n] with |[S™| <k,
Fsatk+2[n (]E |+ H(v)) < O(nIIAIIF/\/E) where v = ]ET~I55* "]

We postpone the proof to the end, since it builds upon the techniques for proving the
NMF error bounds (Theorems 1 and 2).
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NMF approximation error for Ising models (Proofs)

Theorem 1 (Jain-Koehler-Risteski ’19).

For a symmetric interaction matrix A € R™™, and consider the Ising Gibbs measure
1

w(o) x< ef(@ where f(o) = iaTAa

Then, F — TNMF =0 (n2/3||14||12:/3)

Theorem 2 (Eldan ’20).

For a symmetric interaction matrix A € R™ ", and consider the Ising Gibbs measure

1
w(o) x< ef(@ where f(o) = iaTAa

Then, F — Fymr < 3logdet(l + LY2Cov(u)LY/?), where L := (42)1/2
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Measure decomposition

Lemma. Suppose we can decompose u(og) « ef(9) as a mixture IE9~5[M(9)], where € is a distribution over
some auxiliary state space 7, and each component measure ,u(e) is again a distribution over {+1}". Assume

this decomposition admits the following properties:

“Low-entropy” mixture:
H) — Bgog[H(u@)] < a

“Near-product” components:

Eg-¢ [IEM(G) [f] = En(ﬂ(e))[f]] <7

ThenF —Fymr < @ + 17 n(u(e)) the unique product measure with
the same marginals as u
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Proof of the measure decomposition lemma

According to the Gibbs Variational Principle,

F = Eoulf ()] + H() = Bo¢ [E,_,@[f(@)] + H(u®)| + (H() — Egg[H(u®)])

< Ep-¢ |E,,@lf(0)] + H(H(Q))_ +a

According to the Maximum Entropy Principle, H(,u(e)) <H (n(,u(g)))
Therefore,

F < Eog [E,_of(@]+H (m(u®))| + «

< Bog [Eynuon @]+ H (2(®))| + @ + (0[] = By 1)
< ?NMF +a+n
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Decomposition via Pinning

Let u be any probability measure over {+1}". Then for every £ € [n], there exists S € [n]
with |S| < € — 1 such that

2
< —
L

2
[Er~u5 [E{i,j}~Unif ([72’]) [COVG"'HT (Ui' 0]) ]

Cov(X,Y) = E[(X — E[XD(Y — E[Y]D]

Theorem 1 (Jain-Koehler-Risteski '19).

For a symmetric interaction matrix A € R™*"™, and consider the Ising Gibbs measure

1
1(o) x ef@ where f(o) = EO'TAO'

Then, F — TNMF =0 (n2/3”A“122'/3)
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Decomposition via Pinning

Let u be any probability measure over {+1}". Then for every £ € [n], there exists S € [n]
with |S| < € — 1 such that

N

<

2
[ET~MS [E{i,j}~Unif ([72’]) [COVGN”T (Ui' UJ) ]
Cov(X,Y) = E[(X — E[XD(Y — E[Y]D]

Proof of Theorem 1.
Let £ = O(1/€?) and apply the Pinning Lemma, which gives a subset S of size O(1/€2)

Let the mixture distribution ¢ = ug

1L is supported on a set of size 2SI Thus, H(&) < |S| = 0(1/€?)

H(u) — IE9~§[H(,U(9))] < H(&) (by the chain rule of conditional entropy)

Hence, @ = 0(1/€?) “Entropy-covariance trade-off”
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Decomposition via Pinning

Let u be any probability measure over {+1}". Then for every £ € [n], there exists S € [n]
with |S| < € — 1 such that

<

N

2
[ET~MS [E{i,j}~Unif ([72’]) [COVGN”T (Ui' GJ) ]

Cov(X,Y) = E[(X — E[X])(Y — E[Y])]
Proof of Theorem 1.

Recall that f (o) = %O'TAO'
a~u [f(O')] Zl] ij a~u [O-lo-]] and IE0~7t(uT) [f(O')] ZiinjIEa~,uT[0-i]IEa~uT[O-j]

IEafvuT [f(o)] — a~7r(/ﬂ) [f(0)] = Zl] Al] ]EO'~,LL [COVJ~/.L (O-lo-])] —tl‘[A - Cov(u®)]
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Decomposition via Pinning

Let u be any probability measure over {+1}". Then for every £ € [n], there exists S € [n]
with |S| < € — 1 such that

<

N

2
[ET~MS [E{i,j}~Unif ([72’]) [COVGN”T (Ui' GJ) ]
Cov(X,Y) = E[(X — E[X])(Y — E[Y])]
Proof of Theorem 1.
2E; s [Egmpt [ (0)] = Egununy [F (]| = tr 4+ Erey [Cov(uD)]]

< lAllf - | Ezepg[Cov(uD]|| .

< lAllg * EqeyglllCov(uMIIF]1™?
= O(enl|Allr)

Thus, n = O(enl|A||lr). We have F — Fyyr < 0(1/€? + en||Allf) = O (n2/3||z4||12:/3)
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Proof of the Pinning Lemma

Recall that the mutual information 1(X;Y) is defined by:
1(X;Y) = Dy (Law(X, Y)||Law(X) ® Law(Y)) = H(X) — H(X|Y)

Fact. Let X,Y be {+1}-valued random variables. Then Cov(X,Y)? < 2I(X;Y)
) : 1
We'll prove that 35, E{i,j}~Unif([’2‘])[1(ai’ 0j|05)] < y

I(0;; 0j|0os) = H(gj|as) — H(aj|osu0)
Forany iy, ...,ip,J € [n],

? ?
1 1
LN o oty 1) = 2 (1o 012) = H(glots 1)

1
_ z(H(Jj) — H(aj|al-1, ...,ai{,))

telescoping sum

1
£

IA
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Proof of the Pinning Lemma

We'll prove that 38, IE{i,j}~Unif([’21])[1(ai; gilos)] < %

Forany iy, ...,ipjJ € [n],

? ?
1 1
1S ol = S (1)~ oot )

1

- 5 (1) = H(aloy, ) <

IA

Averaging over i, ..., Ly, J, we get that

1
IEiln--'it—l"’ [n] [Eit:]"“[n] [I(O-it; O-] |O-l'1’ B O-l't—1)]] S z

N~

1
£

t=1

Therefore, there must be an S = {i, ..., i;_1} for some t < ¥ that satisfies the condition
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SA approximation error

Theorem 3 (Risteski ’16).

For a symmetric interaction matrix A € R™*"™, and consider the Ising Gibbs measure

1
1(o) x ef@ where f(o) = EO'TAO'

For0 <k <n-2,
0 < Fsak+2;ink —F < O(nllAllr/Vk)

Moreover, if P is the optimal pseudo-distribution, then we can round it into a product measure m satisfying

F — (Eqlf] + Hm) < 0(nllAllz/Vk + k)
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Rounding the pseudo-distribution

Let p be the optimal pseudo-distribution. Fix S € [n] with |S| < k
Define a mixture of distributions:

Sample T ~ P

Sample o € {+1}" according to a product measure * defined by:

0;, Vi€S Og =T

T
T T vigs

3 S* € [n] with |[S™| <k,
Fsatk+2n (]E |+ H(v)) < O(nIIAIIF/\/E) where v = E b "]
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Proof of SA approximation error

The Pinning Lemma also works for & 4»-pseudo-distributions when pinning up to k coordinates

There exists S* € [n] with |S*| < k such that

2
IET~5S* IE{U} Umf [C0V0~p (al, E
where Cova~p (al,aj) = IEpU [alaj] [al] IE [0]] is the pseudo-covariance

Using the same argument in the proof of Theorem 1, we get that

Elf] - E,[f]1 < 0(nllAllg /i)

By the definitior o
Proof of Theorem 1. H (P) = |mll_n {H(pg) + Z H(p; |p5)}
2+ Bem g |Eomplf ()] = Egenun[f ()] = tr[a- ET~ﬂS[Cov<uf)]] s

< ”A“F ' ||]Er~ys[C0V(MT)]“F

o < |Allp - B~y [lICov(u™)I7]/?
Combining then = O(enl|Allr)
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Sherali-Adams vs. Sum-of-Squares

n=3and ¥ ={0,{1},{2},{3},{1,2},{1,3}, {2,3}}

pili =

l
ﬁl}[l = rj — _1] :ﬁl][l = _le — 1] - 1/2

+
1

11=1/2

Level-2 Sherali-Adams cannot refute it

Degree-2 SoS can refute it:

October 16, 2025
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Eigenvalues: 2,2,1,—1



Sherali-Adams vs. Sum-of-Squares

Level-k Sherali-Adams

> nY%®) linear constraints

Degree-k Sum-of-Squares

> M, 20 © u'Mu=>0 Vue R

infinitely many linear constraints
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Proof of Theorem 2

Theorem 2 (Eldan ’20).

For a symmetric interaction matrix A € R™™", and consider the Ising Gibbs measure
1
w(o) x< ef(@ where f(o) = iaTAa

Then, F — Fymr < 3logdet(l + LY2Cov(u)LY/?), where L := (42)1/2

- Technical tool: stochastic localization (SL)
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Refined Decompositions via SL

Theorem (Eldan "20).

Let 1 be any probability measure over {+1}". Then for every symmetric positive definite matrix

L > 0, there exists a decomposition of 4 = Eg_:{11(?)] enjoying the following properties:
$
H(w) — Eg¢[H(u®)] < logdet(I + L2Cov(u)LY/?)

Eg-¢[Cov(u®)] < L1

Eg.¢ :Cov(,u(e))LCov(u(e))] < Cov(u)
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Proof of Theorem 2

We need to check the two conditions in the measure decomposition lemma:

“Low-entropy” mixture:
H) — Bgg[H(u®)] < a

a = logdet(I + LY/2Cov(u)L*/?)
“Near-product” components:
Eg-¢ [Eu(m [f1 = IE,T(M(e)))[f]] <7

Following the proof of Theorem 1,

1 1
Eg-¢ [IEM(G) Lf] - En(u(e))[f]] = —tr [A - ]EQ,Vf[COV(ﬂ(H))]] < otr [IEQN,g[Ll/ZCov(u(Q))Ll/Z]]

2
Eg-¢[LY?Cov(u®)LY/2] < I (by Eldan’s decomposition) (L > A)

IEQN,E[COV(LL(Q))] < Cov(u) (by the Law of Total Covariance)
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Proof of Theorem 2

We need to check the two conditions in the measure decomposition lemma:

“Low-entropy” mixture:
H) — Bgg[H(u®)] < a

a = logdet(I + LY/2Cov(u)L*/?)
“Near-product” components:
Eg-¢ [Eu(m [f1 = IE,T(M(e)))[f]] <7
Following the proof of Theorem 1,

1 1
Eg-¢ [IEM(G) Lf] - En(u(e))[f]] =t [A - ]EQ,Vf[COV(ﬂ(H))]] < otr [IEQN,g[Ll/ZCov(u(Q))Ll/Z]]

2i(Eg-g[LY%Cov(p®)L1/2]) < min{1, 2;(LY2Cov(n)L1/?)} < 2log (1 + Ai(Ll/ZCov(u)Ll/z))

(Cov(u) = 0)
=
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Proof of Eldan’s Decomposition Theorem

We only prove the first two properties following the presentation in (Alaoui-Montanari '22)

Gaussian channel localization

Gaussian

O'Nlu >

— =0+ L2
g~ N(@O,I)

channel

u® = Law(o | ) and £(6) x E, ., [Eg~N(0,I) [19=0+L‘1/2g”

For the first property,
H(u) — Eg¢[H(u®)] = H(o) —H(0 | 6) = I(0;6) = H(8) — H( | 0)

For H(0), by another version of Maximum Entropy Principle,

H(@) <H (N(O, COV(E))) = glog(Zne) + %tr[log Cov($é)] = glog(Zne) + %tr[log(L‘1 + Cov(u))]
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Proof of Eldan’s Decomposition Theorem

We only prove the first two properties following the presentation in (Alaoui-Montanari '22)

Gaussian channel localization

Gaussian

o~ U > — 9 =0+ L2

g~ N(@O,I)

channel

u® = Law(o | ) and £(6) x E, ., [Eg~N(0,I) [19=0+L‘1/2g”
For H(B | 0),

n 1
H®|o)=H(L"Y2g) = Elog(Zne) + Etr[log L]

Hence, I(0;0) < %tr[log(L‘1 + Cov(w))| - %tr[log L 1< ilog det(I + LY/2Cov(u)LY/?)
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Proof of Eldan’s Decomposition Theorem

We only prove the first two properties following the presentation in (Alaoui-Montanari '22)

Gaussian channel localization

Gaussian

— =0+ L2
g~ N(@O,I)

O'Nlu >

channel

u® = Law(o | ) and £(6) x E, ., [Eg~N(0,I) [19=0+L‘1/2g”

For the second property, our goal is to show that
Eg-¢[Cov(u®)] < L7t = Cov(—L"%2g) = Cov(o — 6)
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Proof of Eldan’s Decomposition Theorem

We only prove the first two properties following the presentation in (Alaoui-Montanari '22)

Gaussian channel localization

Gaussian

— =0+ L2
g~ N(@O,I)

O'Nlu >

channel

u® = Law(o | ) and £(6) x E, ., [Eg~N(0,I) [19=0+L‘1/2g”

For the second property, our goal is to show that
tr[Eg-¢[Cov(u®))] - B] < tr[Cov(c —6)-B] VB >0
which is further equivalent to
Eg,s[(c —E[o |6])"B(c — E[o | 6])] < Eg,[(c —6)"B(o — )]
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Proof of Eldan’s Decomposition Theorem

We only prove the first two properties following the presentation in (Alaoui-Montanari ’22)

Gaussian channel localization

Gaussian

» 0 =0+ L Y2g
g ~N(O,1I)

O'Nu >

channel

For the second property,
Egs[(0c —E[o|6])"B(o — E[o | 6])] < Eg[(c — 0)"B(c — )]

. Given 8 = ¢ + L™Y/2g, how to estimate ¢?

» Maximum likelihood estimator: 6 = 0 : : :
Fact. Bayes estimator is optimal under mean-

> Bayes estimator: Gpayes = Elo | 0] squared error
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Bayesian estimation theory

The loss function is the mean-squared error weighted by B:
Egs[(c —6)"B(o — 8)] = Eg4lllo — 6l13]

For any estimator 6(6),
7"9(5') = Eq | 9[”0' - 6'“%?] = Eq | 6 ’”O- _ é\-Bayes + é\-Bayes _ 6”2]
= ]EO' | 6 [”U _ 6Bayes”2] + ”é\-Bayes _ 6”2 (Ea | 9[0 o é\-Bayes] — 0)
= r@(é\-Bayes)

Therefore,

Eo.o |[|0 = Gpayes||| < Eoolllo = Gl13]

for any estimaror 6
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Corollary of Theorem 2

Corollary.

For a symmetric interaction matrix A € R™™, and consider the Ising Gibbs measure

1
w(o) x< ef(@ where f(o) = iaTAa

Then, F — Fymr < 3 - rank(4) - log(||Al|n + 1)

Consider 4 = %11T
rank(4A) = 1and ||A|| = B
According to the corollary, F — Fymr < 3log(nf + 1)
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Corollary of Theorem 2

Corollary.

For a symmetric interaction matrix A € R™™, and consider the Ising Gibbs measure

1
w(o) x ef(@ where f(o) = iaTAa

Then, F — Fymr < 3 - rank(4) - log(||Al|ln + 1)

Proof.

logdet(I + LY2Cov(p)LY/?) = Z log(2;(LY2Cov(w)LY/?) + 1)
i€[n]
< rank(4) - log(||LY/2Cov(pw)LY?|| + 1)
< rank(4) - log([|All - [ICov()|| + 1)
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Corollary of Theorem 2

Corollary.

For a symmetric interaction matrix A € R™™, and consider the Ising Gibbs measure

1
w(o) x ef(@ where f(o) = iaTAa

Then, F — Fymr < 3 - rank(4) - log(||Al|ln + 1)
Proof.

logdet(I + LY2Cov(p)LY/?) < rank(4) - log(||A]l - |Cov()|| + 1)

ICov(ll < tr{Cov(w)] < T peqennlloli?ulo) < n
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